Codifferential Calculi and Quantum Homogeneous Spaces

Julius Benner

Charles University Prague

New perspectives in quantum representation theory November 19, 2025

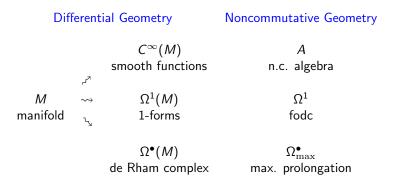
Differential Geometry

Noncommutative Geometry

Differential Geometry

Noncommutative Geometry

$$C^{\infty}(M)$$
 smooth functions $M \leftrightarrow \Omega^1(M)$ manifold $\Omega^{\bullet}(M)$ de Rham complex



Philosophy

A noncommutative manifold is a noncommutative algebra A together with a first order differential calculus on A.

Differential Calculi

• Fix a field k with $char(k) \neq 2$.

Definition

A first order differential caclulus (fodc) on a \mathbb{R} -algebra A is an A-bimodule Ω^1 together with a derivation $d: A \to \Omega^1$ such that $A \otimes A \to \Omega^1$, $a \mapsto ad(b)$ is surjective.

Differential Calculi

• Fix a field k with $char(k) \neq 2$.

Definition

A first order differential caclulus (fodc) on a k-algebra A is an A-bimodule Ω^1 together with a derivation $d:A\to\Omega^1$ such that $A\otimes A\to\Omega^1, a\mapsto ad(b)$ is surjective.

• Every k-algebra A admits a universal fodc Ω^1_u , such that every other fodc over A is a quotient of Ω^1_u .

Differential Calculi

• Fix a field k with $char(k) \neq 2$.

Definition

A first order differential caclulus (fodc) on a \mathbb{R} -algebra A is an A-bimodule Ω^1 together with a derivation $d: A \to \Omega^1$ such that $A \otimes A \to \Omega^1$, $a \mapsto ad(b)$ is surjective.

- Every k-algebra A admits a universal fodc Ω_u^1 , such that every other fodc over A is a quotient of Ω_u^1 .
- Problem: The universal fodc tends to be the wrong choice for a fodc; for instance, $H^{\bullet}(\Omega_{u,\max}^{\bullet}) = \mathbb{k}$. Thus, arbitrary associative \mathbb{k} -algebras are too general.

3/14

• Let \mathfrak{g} be a complex semisimple Lie algebra, and let S be subset of the simple roots of \mathfrak{g} .

- Let $\mathfrak g$ be a complex semisimple Lie algebra, and let S be subset of the simple roots of $\mathfrak g$.
- This datum gives rise to a flag manifold:

$$P_S \hookrightarrow G \twoheadrightarrow G/P_S$$

- Let $\mathfrak g$ be a complex semisimple Lie algebra, and let S be subset of the simple roots of $\mathfrak g$.
- This datum gives rise to a flag manifold:

$$P_S \hookrightarrow G \twoheadrightarrow G/P_S$$

• E. g. $G/P_S = \mathbb{C}P^n$, $G/P_S = Gr_{m,n}(\mathbb{C})$.

- Let $\mathfrak g$ be a complex semisimple Lie algebra, and let S be subset of the simple roots of $\mathfrak g$.
- This datum gives rise to a flag manifold:

$$P_S \hookrightarrow G \twoheadrightarrow G/P_S$$

- E. g. $G/P_S = \mathbb{C}P^n$, $G/P_S = Gr_{m,n}(\mathbb{C})$.
- Let $q \in \mathbb{C}^{\times} \setminus \sqrt[\mathbb{N}]{1}$. Then we have the following q-analog:

$$\mathcal{O}_q(L_S) \twoheadleftarrow \mathcal{O}_q(G) \hookleftarrow \mathcal{O}_q(G/L_S) := \mathcal{O}_q(G)^{\operatorname{co} \mathcal{O}_q(L_S)}$$

(here L_S denotes the Levi factor of P_S).

- Let $\mathfrak g$ be a complex semisimple Lie algebra, and let S be subset of the simple roots of $\mathfrak g$.
- This datum gives rise to a flag manifold:

$$P_S \hookrightarrow G \twoheadrightarrow G/P_S$$

- E. g. $G/P_S = \mathbb{C}P^n$, $G/P_S = Gr_{m,n}(\mathbb{C})$.
- Let $q \in \mathbb{C}^{\times} \setminus \sqrt[\mathbb{N}]{1}$. Then we have the following q-analog:

$$\mathcal{O}_q(L_S) \twoheadleftarrow \mathcal{O}_q(G) \hookleftarrow \mathcal{O}_q(G/L_S) := \mathcal{O}_q(G)^{\operatorname{co} \mathcal{O}_q(L_S)}$$

(here L_S denotes the Levi factor of P_S).

• Note: for $q \in (0,\infty) \setminus \{1\}$ all the algebras above admit *-structures and in the limit $q \to 1$, $\mathcal{O}_q(G/L_S)$ recovers the real coordinate ring of G/P_S .

The Heckenberger-Kolb Differential Calculi

Definition

If the subset of simple roots S is given by removing a cominuscule root, we call $\mathcal{O}_q(G/L_S)$ irreducible quantized flag mainfold.

Theorem (Heckenberger–Kolb '06)

Let $B=\mathcal{O}_q(G/L_S)$ be an irreducible quantized flag manifold. Then there exist first order differential calculi $\Omega_q^{(1,0)}(G/L_S)$ and $\Omega_q^{(0,1)}(G/L_S)$ on B such that the maximal prolongations satisfy

$$\dim\Omega_q^{(r,0)}(G/L_S)=\dim\Omega_q^{(0,r)}(G/L_S)=\binom{m}{r},\quad m=\dim_{\mathbb{C}}G/P_S.$$

The Quantized Enveloping Algebra Side

 Quantized flag manifolds have the following incarnation on the Lie algebraic side

$$U_q(\mathfrak{l}_{\mathcal{S}}) \hookrightarrow U_q(\mathfrak{g}) \twoheadrightarrow C_q(\mathfrak{g}/\mathfrak{l}_{\mathcal{S}}) := U_q(\mathfrak{g}) \otimes_{U_q(\mathfrak{l}_{\mathcal{S}})} \mathbb{C}_{\mathsf{triv}}.$$

The Quantized Enveloping Algebra Side

 Quantized flag manifolds have the following incarnation on the Lie algebraic side

$$U_q(\mathfrak{l}_{\mathcal{S}}) \hookrightarrow U_q(\mathfrak{g}) \twoheadrightarrow C_q(\mathfrak{g}/\mathfrak{l}_{\mathcal{S}}) := U_q(\mathfrak{g}) \otimes_{U_q(\mathfrak{l}_{\mathcal{S}})} \mathbb{C}_{\mathsf{triv}}.$$

Proposition

One has

$$\mathcal{O}_q(G) \cong \mathit{U}_q(\mathfrak{g})^{\circ}_{\mathsf{type}\;\mathsf{I}}, \quad \mathcal{O}_q(G/L_S) \cong \mathit{C}_q(\mathfrak{g}/\mathfrak{l}_S)^{\circ}$$

$$(M^{\circ} = \{ f \in M \mid \dim(fU_q(\mathfrak{g})) < \infty \}).$$

The Quantized Enveloping Algebra Side

 Quantized flag manifolds have the following incarnation on the Lie algebraic side

$$U_q(\mathfrak{l}_{\mathcal{S}}) \hookrightarrow U_q(\mathfrak{g}) \twoheadrightarrow C_q(\mathfrak{g}/\mathfrak{l}_{\mathcal{S}}) := U_q(\mathfrak{g}) \otimes_{U_q(\mathfrak{l}_{\mathcal{S}})} \mathbb{C}_{\mathsf{triv}}.$$

Proposition

One has

$$\mathcal{O}_q(G) \cong \mathit{U}_q(\mathfrak{g})^{\circ}_{\mathsf{type}\;\mathsf{I}}, \quad \mathcal{O}_q(G/L_S) \cong \mathit{C}_q(\mathfrak{g}/\mathfrak{l}_S)^{\circ}$$

$$(M^\circ=\{f\in M\mid \dim(fU_q(\mathfrak{g}))<\infty\}).$$

• Idea: Study codifferential calculi on $C_q(\mathfrak{g}/\mathfrak{l}_S)$ instead.

Theorem (Heckenberger-Kolb '07)

For an irreducible quantized flag manifold $\mathcal{O}_q(G/L_S)$, there exists an isomorphism

$$\Omega_q^{(0,ullet)}(G/L_S)\cong\left(\underline{C_ullet}^S\right)^\circ$$

where C_{\bullet}^{S} denotes the parabolic BGG resolution of the trivial $U_{q}(\mathfrak{g})$ -module (a similar isomorphism exists for the holomorphic complex).

• The first term of $\underline{C_{\bullet}^S}$ is precisely $C_q(\mathfrak{g}/\mathfrak{l}_S)$.

First Order Codifferential Calculi

Definition

Let C be a coalgebra over k, and let W_1 be a C-bicomodule

ullet A \Bbbk -linear map $\delta\colon \mathscr{W}_1 o C$ is called *coderivation* if

$$\Delta(\delta(w)) = \delta(w_{(0)}) \otimes w_{(1)} + w_{(-1)} \otimes \delta(w_{(0)})$$

for all $w \in \mathcal{W}_1$.

• Let $\delta \colon \mathscr{W}_1 \to C$ be a coderivation. The pair (\mathscr{W}_1, δ) is called *first order codifferential calculus (focc)* if the map

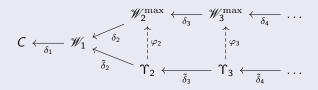
$$W_1 \to C \otimes C$$
, $w \mapsto w_{(-1)} \otimes \delta(w_{(0)})$

is injective.

Theorem (B '25)

Let (\mathscr{W}_1, δ) be a first order codifferential calculus over C. Then there exists a dg coalgebra $(\mathscr{W}_{\bullet}^{\max}, \delta_{\bullet})$ with the following properties:

- ② For any other dg coalgebra $(\Upsilon_{\bullet}, \tilde{\delta}_{\bullet})$ satisfying the first property, the identity $\mathrm{id}_{C \oplus \mathscr{W}_1}$ extends uniquely to a morphism of dg coalgebras $\varphi \colon \Upsilon_{\bullet} \to \mathscr{W}_{\bullet}^{\mathrm{max}}$.



Definition

The pair $(\mathcal{W}_{\bullet}, \delta_{\bullet})$ is called maximal prolongation of $(\mathcal{W}_{1}, \delta)$.

• Note: $C_q(\mathfrak{g}/\mathfrak{l}_S)$ is a module coalgebra over $U_q(\mathfrak{g})$, and by a result of Masuoka, $U_q(\mathfrak{g})$ is faithfully flat over $U_q(\mathfrak{l}_S)$.

- Note: $C_q(\mathfrak{g}/\mathfrak{l}_S)$ is a module coalgebra over $U_q(\mathfrak{g})$, and by a result of Masuoka, $U_q(\mathfrak{g})$ is faithfully flat over $U_q(\mathfrak{l}_S)$.
- From now on: $H \subseteq U$ faithfully flat inclusion of Hopf algebras, and

$$C := U \otimes_H \Bbbk$$
.

- Note: $C_q(\mathfrak{g}/\mathfrak{l}_S)$ is a module coalgebra over $U_q(\mathfrak{g})$, and by a result of Masuoka, $U_q(\mathfrak{g})$ is faithfully flat over $U_q(\mathfrak{l}_S)$.
- From now on: $H \subseteq U$ faithfully flat inclusion of Hopf algebras, and

$$C := U \otimes_H \Bbbk$$
.

• Denote by ${}_{U}^{C}\mathcal{M}^{C}$ respectively ${}_{H}\mathcal{M}^{C}$ the categories of C-bicovariant left U-modules, respectively right C-covariant left H-modules.

- Note: $C_q(\mathfrak{g}/\mathfrak{l}_S)$ is a module coalgebra over $U_q(\mathfrak{g})$, and by a result of Masuoka, $U_q(\mathfrak{g})$ is faithfully flat over $U_q(\mathfrak{l}_S)$.
- From now on: $H \subseteq U$ faithfully flat inclusion of Hopf algebras, and

$$C := U \otimes_H \Bbbk$$
.

• Denote by ${}_{U}^{C}\mathcal{M}^{C}$ respectively ${}_{H}\mathcal{M}^{C}$ the categories of C-bicovariant left U-modules, respectively right C-covariant left H-modules.

- Note: $C_q(\mathfrak{g}/\mathfrak{l}_S)$ is a module coalgebra over $U_q(\mathfrak{g})$, and by a result of Masuoka, $U_q(\mathfrak{g})$ is faithfully flat over $U_q(\mathfrak{l}_S)$.
- From now on: $H \subseteq U$ faithfully flat inclusion of Hopf algebras, and

$$C:=U\otimes_H \Bbbk$$
.

• Denote by ${}^{C}_{U}\mathcal{M}^{C}$ respectively ${}_{H}\mathcal{M}^{C}$ the categories of C-bicovariant left U-modules, respectively right C-covariant left H-modules.

Definition

A focc (W_1, δ) is *U-equivariant* if $W_1 \in {}_U^C \mathcal{M}^C$ and δ is *U-*linear.

- Note: $C_q(\mathfrak{g}/\mathfrak{l}_S)$ is a module coalgebra over $U_q(\mathfrak{g})$, and by a result of Masuoka, $U_q(\mathfrak{g})$ is faithfully flat over $U_q(\mathfrak{l}_S)$.
- From now on: $H \subseteq U$ faithfully flat inclusion of Hopf algebras, and

$$C := U \otimes_H \Bbbk$$
.

• Denote by ${}^{C}_{U}\mathcal{M}^{C}$ respectively ${}^{H}\mathcal{M}^{C}$ the categories of C-bicovariant left U-modules, respectively right C-covariant left H-modules.

Definition

A focc (W_1, δ) is *U-equivariant* if $W_1 \in {}^{C}_{U}\mathcal{M}^{C}$ and δ is *U*-linear.

Proposition

Let (\mathcal{W}_1, δ) be a *U*-equivariant focc, then also $\mathcal{W}_{\bullet}^{\max} \in {}^{\mathcal{C}}_{U}\mathcal{M}^{\mathcal{C}}$ and δ_{\bullet} is *U*-linear.

Hermisson-Heckenberger-Kolb Classification for FOCC's

Definition

A quantum tangent space is a subspace $T \subseteq C^+ = \ker(\varepsilon)$ such that $HT \subseteq T$ and $\Delta(T) \subseteq (T \oplus \mathbb{k}[1]) \otimes C$.

Hermisson-Heckenberger-Kolb Classification for FOCC's

Definition

A quantum tangent space is a subspace $T \subseteq C^+ = \ker(\varepsilon)$ such that $HT \subseteq T$ and $\Delta(T) \subseteq (T \oplus \mathbb{k}[1]) \otimes C$.

Remark

Any quantum tangent space $T\subseteq C^+$ is a right C-comodule via $t\mapsto t_{(1)}^+\otimes t_{(2)}$ (here $t^+:=t-\varepsilon(t)[1]$). In addition $T\in {}_H\mathcal{M}^C$.

Hermisson-Heckenberger-Kolb Classification for FOCC's

Definition

A quantum tangent space is a subspace $T \subseteq C^+ = \ker(\varepsilon)$ such that $HT \subseteq T$ and $\Delta(T) \subseteq (T \oplus \mathbb{k}[1]) \otimes C$.

Remark

Any quantum tangent space $T\subseteq C^+$ is a right C-comodule via $t\mapsto t_{(1)}^+\otimes t_{(2)}$ (here $t^+:=t-\varepsilon(t)[1]$). In addition $T\in {}_H\mathcal{M}^C$.

Theorem (B '25)

There is a 1:1-correspondence

 $\{U$ -equivariant focc's $\} \stackrel{1:1}{\leftrightarrow} \{\text{quantum tangent spaces } T \subseteq C^+\}$

given by $(W_1, \delta) \mapsto {}^{\operatorname{co} C} W_1$ and $T \mapsto (U \otimes_H T, \delta)$ with $\delta(x \otimes_H t) = xt$. Moreover, the universal focc corresponds to $U \otimes_H C^+$.

New perspectives in QRT

Theorem (B '25)

Let $T\subseteq C^+$ be a quantum tangent space, such that the right C-coaction is given by $t\mapsto t\otimes [1]$ for all $t\in T$. Let $\mathscr{W}_1:=U\otimes_H T$ be the corresponding first order codifferential calculus. Consider the map

$$\hat{\delta} \colon T \otimes T \to U \otimes_H C^+, \quad [x] \otimes [y] \mapsto x_{(1)} \otimes_H [S(x_{(2)})y]$$

and let $R := \hat{\delta}^{-1}(U \otimes_H T) \subseteq T \otimes T$. Then the maximal prolongation can be written as

$$\mathscr{W}_{\bullet}^{\max} \cong U \otimes_{H} C(T,R)$$

where C(T,R) is the quadratic coalgebra given by the quadratic datum $T,R \subseteq T \otimes T$:

$$C(T,R) := \mathbb{k} \oplus T \oplus R \oplus \bigoplus_{n \geq 3} \bigcap_{i+i+2=n} T^{\otimes i} \otimes R \otimes T^{\otimes j} \subseteq T^{c}(T).$$

The Podles Cocalculus

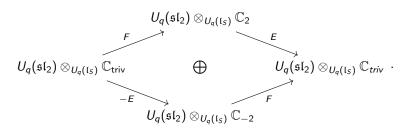
• Let $U := U_q(\mathfrak{sl}_2)$ generated by E, F, K, K^{-1} and let $H = U_q(\mathfrak{l}_S)$ be the subalgebra generated by K and K^{-1} .

The Podles Cocalculus

- Let $U := U_q(\mathfrak{sl}_2)$ generated by E, F, K, K^{-1} and let $H = U_q(\mathfrak{l}_S)$ be the subalgebra generated by K and K^{-1} .
- Consider the quantum tangent space $T := \operatorname{span}_{\mathbb{C}}\{[E], [F]\}.$

The Podles Cocalculus

- Let $U := U_q(\mathfrak{sl}_2)$ generated by E, F, K, K^{-1} and let $H = U_q(\mathfrak{l}_S)$ be the subalgebra generated by K and K^{-1} .
- Consider the quantum tangent space $T := \operatorname{span}_{\mathbb{C}}\{[E], [F]\}.$
- Then the maximal prolongation of the corresponding focc can be written as



The Antiholomorphic Cocalculus on $\mathcal{O}_q(\mathbb{C}\mathrm{P}^r)$

• Now let $U = U_q(\mathfrak{sl}_{r+1})$ and $H = U_q(\mathfrak{l}_S)$ with $S = \{1, \ldots, r\} \setminus \{1\}$.

The Antiholomorphic Cocalculus on $\mathcal{O}_q(\mathbb{C}\mathrm{P}^r)$

- Now let $U = U_q(\mathfrak{sl}_{r+1})$ and $H = U_q(\mathfrak{l}_S)$ with $S = \{1, \ldots, r\} \setminus \{1\}$.
- ullet Consider the quantum tangent space $\mathcal{T}^{(0,1)}\subseteq \mathcal{C}_q(\mathfrak{g}/\mathfrak{l}_S)$ given by

$$\operatorname{span}_{\mathbb{C}}\{[E_1], [E_2E_1], \dots, [E_rE_{r-1}\dots E_1]\}.$$

The Antiholomorphic Cocalculus on $\mathcal{O}_q(\mathbb{C}\mathrm{P}^r)$

- Now let $U = U_q(\mathfrak{sl}_{r+1})$ and $H = U_q(\mathfrak{l}_S)$ with $S = \{1, \ldots, r\} \setminus \{1\}$.
- ullet Consider the quantum tangent space $\mathcal{T}^{(0,1)}\subseteq \mathcal{C}_q(\mathfrak{g}/\mathfrak{l}_S)$ given by

$$\operatorname{span}_{\mathbb{C}}\{[E_1],[E_2E_1],\ldots,[E_rE_{r-1}\ldots E_1]\}.$$

ullet The maximal prolongation of $U_q(\mathfrak{sl}_{r+1})\otimes_{U_q(\mathfrak{l}_{\mathfrak{S}})}T^{(0,1)}$ can be written as

$$U_q(\mathfrak{sl}_{r+1}) \otimes_{U_q(\mathfrak{l}_S)} \Lambda_q^{\bullet,c}(T^{(0,1)})$$

where $\Lambda_q^{ullet,c}(\mathcal{T}^{(0,1)})$ is the dual coalgebra of

$$\Lambda_q^{\bullet}(T^{(0,1)}) = T(T^{(0,1)})/\langle e_i \otimes e_j + q^{-1}e_j \otimes e_i \mid 1 \leq i, j \leq r \rangle.$$

$$(e_i := [E_i E_{i-1} \dots E_1])$$

References

- [1] I. Heckenberger; S. Kolb. *De Rham complex for quantized irreducible flag manifolds*. J. Algebra, 305(2), 2006
- [2] I. Heckenberger; S. Kolb. Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds. J. Geom. Phys., 57(11), 2007
- [3] A. Masuoka *On Hopf Algebras with Cocommutative Coradicals*. J. Algebra, 144, 1991
- [4] H.-J. Schneider. *Principal homogeneous spaces for arbitrary Hopf algebras*. Israel j. Math., 72(1-2), 1990