Lusztig differential calculi on the non-irreducible quantum flag manifolds

New perspectives in quantum representation theory. ICMS, Edinburgh.

Antonio Del Donno

November 19th 2025

Differential structures over algebras

Let A be a \mathbb{K} -algebra.

Differential structures over algebras

Let A be a \mathbb{K} -algebra.

Definition

A first order differential calculus (FODC) (Γ, d) over A is the datum of:

- 1. an A-bimodule Γ;
- 2. a linear map $d: A \to \Gamma$ satisfying the Leibniz rule d(ab) = (da)b + adb for every $a, b \in A$;
- 3. a surjectivity condition $\Gamma = AdA$, i.e. $\Gamma = \text{span}\{adb : a, b \in A\}$.

Differential structures over algebras

Let A be a \mathbb{K} -algebra.

Definition

A first order differential calculus (FODC) (Γ, d) over A is the datum of:

- 1. an A-bimodule Γ;
- 2. a linear map $d: A \to \Gamma$ satisfying the Leibniz rule d(ab) = (da)b + adb for every $a, b \in A$;
- 3. a surjectivity condition $\Gamma = AdA$, i.e. $\Gamma = \text{span}\{adb : a, b \in A\}$.

Definition

A differential calculus on a \mathbb{K} -algebra A is a differential graded algebra $(\Omega^{\bullet}, \wedge, \mathbf{d})$ which is generated in degree zero and such that $\Omega^0 = A$. The former means that

$$\Omega^k = \operatorname{span}_{\mathbb{K}} \{ a^0 d a^1 \wedge \cdots \wedge d a^k : a^0, \dots, a^k \in A \}.$$

We call elements of Ω^k differential k-forms.

• Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.

- Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

• Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.

3

- Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.
- Define accordingly the graded associative unital algebra $\Gamma^{\bullet} := \Gamma^{\otimes_A}/S^{\wedge}$, with induced product \wedge .

- Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.
- Define accordingly the graded associative unital algebra $\Gamma^{\bullet} := \Gamma^{\otimes_A}/S^{\wedge}$, with induced product \wedge .
- Γ is a differential calculus over A.

- Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.
- Define accordingly the graded associative unital algebra $\Gamma^{\bullet} := \Gamma^{\otimes_A}/S^{\wedge}$, with induced product \wedge .
- Γ is a differential calculus over A.

Theorem

Let $(\Omega^{\bullet}, \widetilde{\wedge}, \widetilde{\mathbf{d}})$ be any differential calculus on A such that $\Omega^1 = \Gamma$ and $\widetilde{\mathbf{d}}|_A = \mathbf{d}$. There exists a surjective morphism $\Gamma^{\bullet} \to \Omega^{\bullet}$ of differential graded algebras. In particular, $(\Omega^{\bullet}, \widetilde{\wedge}, \widetilde{\mathbf{d}})$ is a quotient of $(\Gamma^{\bullet}, \wedge, \mathbf{d})$.

Covariant FODCi

From now we fix a Hopf algebra H and a right H-comodule algebra A with right H-coaction $\Delta_A \colon A \to A \otimes H$.

Covariant FODCi

From now we fix a Hopf algebra H and a right H-comodule algebra A with right H-coaction $\Delta_A \colon A \to A \otimes H$.

Definition

A first order differential calculus (Γ, d) on a right H-comodule algebra (A, Δ_A) is called right H-covariant if Γ is a right H-covariant A-bimodule with right H-coaction $\Delta_{\Gamma} : \Gamma \to \Gamma \otimes H$ such that the differential $d : A \to \Gamma$ is right H-colinear:

$$\Delta_{\Gamma} \circ d = (d \otimes id) \circ \Delta_{A}.$$

Similarly for left *H*-covariant and *H*-bicovariant calculi.

Covariant FODCi

From now we fix a Hopf algebra H and a right H-comodule algebra A with right H-coaction $\Delta_A \colon A \to A \otimes H$.

Definition

A first order differential calculus (Γ, \mathbf{d}) on a right H-comodule algebra (A, Δ_A) is called right H-covariant if Γ is a right H-covariant A-bimodule with right H-coaction $\Delta_{\Gamma} : \Gamma \to \Gamma \otimes H$ such that the differential $\mathbf{d} : A \to \Gamma$ is right H-colinear:

$$\Delta_{\Gamma} \circ d = (d \otimes id) \circ \Delta_{A}.$$

Similarly for left *H*-covariant and *H*-bicovariant calculi.

Theorem (Woronowicz '89)

There is a bijective correspondence

{
$$left$$
-covariant FODC i on H } \iff { $right$ $ideals \subseteq ker ε }.$

The calculus is bicovariant if and only if the corresponding ideal $I \subseteq \ker \varepsilon$ is Ad -invariant, where $\mathrm{Ad}(h) = h_2 \otimes S(h_1)h_3$.

• Let A and H be Hopf algebras and let $\pi: A \to H$ be a Hopf algebra surjection.

- Let A and H be Hopf algebras and let $\pi: A \to H$ be a Hopf algebra surjection.
- We can view A as a right H-comodule algebra with right H-coaction

$$\Delta_A$$
: $(id_A \otimes \pi) \circ \Delta : A \to A \otimes H$.

- Let A and H be Hopf algebras and let $\pi: A \to H$ be a Hopf algebra surjection.
- We can view A as a right H-comodule algebra with right H-coaction

$$\Delta_A$$
: $(id_A \otimes \pi) \circ \Delta : A \to A \otimes H$.

• The space of coinvariant elements under the coaction Δ_A is defined by

$$B:=A^{\operatorname{co} H}=\left\{a\in A\colon \Delta_A(a)=a\otimes 1\right\}.$$

- Let A and H be Hopf algebras and let $\pi: A \to H$ be a Hopf algebra surjection.
- We can view A as a right H-comodule algebra with right H-coaction

$$\Delta_A$$
: $(id_A \otimes \pi) \circ \Delta : A \to A \otimes H$.

ullet The space of coinvariant elements under the coaction Δ_A is defined by

$$B:=A^{\operatorname{co} H}=\left\{a\in A\colon \Delta_A(a)=a\otimes 1\right\}.$$

• The space B is a right coideal subalgebra of A.

- Let A and H be Hopf algebras and let $\pi: A \to H$ be a Hopf algebra surjection.
- We can view A as a right H-comodule algebra with right H-coaction

$$\Delta_A$$
: $(id_A \otimes \pi) \circ \Delta : A \to A \otimes H$.

ullet The space of coinvariant elements under the coaction $\Delta_{\mathcal{A}}$ is defined by

$$B:=A^{\operatorname{co} H}=\left\{a\in A\colon \Delta_A(a)=a\otimes 1\right\}.$$

• The space B is a right coideal subalgebra of A.

Definition

Let B as above. We say that B is a quantum homogeneous space if A is faithfully flat as a right B-module.

• Let \mathfrak{g} be a complex semisimple Lie algebra of rank ℓ and let G be the corresponding compact, connected, simply connected Lie group.

- Let g be a complex semisimple Lie algebra of rank ℓ and let G be the corresponding compact, connected, simply connected Lie group.
- Let $U_q(\mathfrak{g})$ be the quantised enveloping algebra of \mathfrak{g} and let $\mathcal{O}_q(G)$ be the corresponding quantised algebra of functions over G.

- Let \mathfrak{g} be a complex semisimple Lie algebra of rank ℓ and let G be the corresponding compact, connected, simply connected Lie group.
- Let $U_q(\mathfrak{g})$ be the quantised enveloping algebra of \mathfrak{g} and let $\mathcal{O}_q(G)$ be the corresponding quantised algebra of functions over G.
- Let $S \subset \Pi$ be a subset of the simple roots of \mathfrak{g} , and consider the Hopf subalgebra $U_q(\ell_S) \subset U_q(\mathfrak{g})$ given by

$$U_q(\ell_S) := \langle K_i^{\pm 1}, E_j, F_j \mid i = 1, \ldots, \ell, j \in S \rangle.$$

- Let \mathfrak{g} be a complex semisimple Lie algebra of rank ℓ and let G be the corresponding compact, connected, simply connected Lie group.
- Let $U_q(\mathfrak{g})$ be the quantised enveloping algebra of \mathfrak{g} and let $\mathcal{O}_q(G)$ be the corresponding quantised algebra of functions over G.
- Let $S \subset \Pi$ be a subset of the simple roots of \mathfrak{g} , and consider the Hopf subalgebra $U_q(\ell_S) \subset U_q(\mathfrak{g})$ given by

$$U_q(\ell_S) := \langle K_i^{\pm 1}, E_j, F_j \mid i = 1, \ldots, \ell, j \in S \rangle.$$

Definition

We define the quantum flag manifold $\mathcal{O}_q(G/L_S)$ as the subalgebra

$$\mathcal{O}_q(G/L_s) := \{ b \in \mathcal{O}_q(G) \mid X \triangleright b = \varepsilon(X)b, \ \forall X \in U_q(\ell_S) \}.$$

of $U_q(\ell_S)$ -invariant elements of $\mathcal{O}_q(G)$.

- Let \mathfrak{g} be a complex semisimple Lie algebra of rank ℓ and let G be the corresponding compact, connected, simply connected Lie group.
- Let $U_q(\mathfrak{g})$ be the quantised enveloping algebra of \mathfrak{g} and let $\mathcal{O}_q(G)$ be the corresponding quantised algebra of functions over G.
- Let $S \subset \Pi$ be a subset of the simple roots of \mathfrak{g} , and consider the Hopf subalgebra $U_q(\ell_S) \subset U_q(\mathfrak{g})$ given by

$$U_q(\ell_S) := \langle K_i^{\pm 1}, E_j, F_j \mid i = 1, \ldots, \ell, j \in S \rangle.$$

Definition

We define the quantum flag manifold $\mathcal{O}_q(G/L_S)$ as the subalgebra

$$\mathcal{O}_q(G/L_s) := \{ b \in \mathcal{O}_q(G) \mid X \triangleright b = \varepsilon(X)b, \ \forall X \in U_q(\ell_S) \}.$$

of $U_q(\ell_S)$ -invariant elements of $\mathcal{O}_q(G)$.

• Quantum flag manifolds are examples of quantum homogeneous spaces.

• Let $B = A^{coH}$ be a quantum homogeneous space.

- Let $B = A^{coH}$ be a quantum homogeneous space.
- For any $I \subset B^+ := B \cap \ker(\varepsilon)$, define $\Omega^1(B) := A \square_H B^+/I$.

- Let $B = A^{coH}$ be a quantum homogeneous space.
- For any $I \subset B^+ := B \cap \ker(\varepsilon)$, define $\Omega^1(B) := A \square_H B^+ / I$.
- $\Omega^1(B)$ is a left A-covariant B-bimodule, with bimodule structure

$$b(a \otimes [c])b' := b a b'_1 \otimes [c b'_2].$$

and left A-coaction

$$_{\Omega^1}\Delta := \Delta \otimes \mathrm{id}.$$

- Let $B = A^{coH}$ be a quantum homogeneous space.
- For any $I \subset B^+ := B \cap \ker(\varepsilon)$, define $\Omega^1(B) := A \square_H B^+ / I$.
- $\Omega^1(B)$ is a left A-covariant B-bimodule, with bimodule structure

$$b(a\otimes [c])b':=b\,a\,b_1'\otimes [c\,b_2'].$$

and left A-coaction

$$_{\Omega^1}\Delta := \Delta \otimes \mathrm{id}.$$

• Let $d: B \to \Omega^1(B)$ be the map defined as

$$d(b) := b_1 \otimes [(b_2)^+].$$

- Let $B = A^{coH}$ be a quantum homogeneous space.
- For any $I \subset B^+ := B \cap \ker(\varepsilon)$, define $\Omega^1(B) := A \square_H B^+/I$.
- $\Omega^1(B)$ is a left A-covariant B-bimodule, with bimodule structure

$$b(a\otimes [c])b':=b\,a\,b_1'\otimes [c\,b_2'].$$

and left A-coaction

$$_{\Omega^1}\Delta := \Delta \otimes \mathrm{id}.$$

• Let d: $B \to \Omega^1(B)$ be the map defined as

$$d(b) := b_1 \otimes [(b_2)^+].$$

Theorem (Hermisson, '02)

The pair $(\Omega^1(B), d)$ is a left A-covariant FODC on B. Moreover, every left A-covariant FODC on B is of this form. We call $V^1 := B^+/I$ the quantum cotangent space associated to $\Omega^1(B)$.

• Let A be a Hopf algebra, W a Hopf subalgebra of A° such that

$$B := {}^{W}A = \{b \in A \mid b_1 \langle w, b_2 \rangle = \varepsilon(w)b, \text{ for all } w \in W\}$$

is a quantum homogeneous space of A.

• Let A be a Hopf algebra, W a Hopf subalgebra of A° such that

$$B := {}^{W}A = \{b \in A \mid b_1 \langle w, b_2 \rangle = \varepsilon(w)b, \text{ for all } w \in W\}$$

is a quantum homogeneous space of A.

• A quantum tangent space for B is a subspace $T \subseteq B^{\circ}$ such that $T \oplus \mathbb{C}1$ is a right coideal of B° and T is a W-submodule under the right adjoint action.

• Let A be a Hopf algebra, W a Hopf subalgebra of A° such that

$$B := {}^{W}A = \{b \in A \mid b_1 \langle w, b_2 \rangle = \varepsilon(w)b, \text{ for all } w \in W\}$$

is a quantum homogeneous space of A.

- A quantum tangent space for B is a subspace $T \subseteq B^{\circ}$ such that $T \oplus \mathbb{C}1$ is a right coideal of B° and T is a W-submodule under the right adjoint action.
- For any quantum tangent space T, a right B-ideal of B^+ is given by

$$I := \left\{ b \in B^+ \mid X(b) = 0, \text{ for all } X \in T \right\}$$

ullet Let A be a Hopf algebra, W a Hopf subalgebra of A° such that

$$B := {}^{W}A = \{b \in A \mid b_1 \langle w, b_2 \rangle = \varepsilon(w)b, \text{ for all } w \in W\}$$

is a quantum homogeneous space of A.

- A quantum tangent space for B is a subspace $T \subseteq B^{\circ}$ such that $T \oplus \mathbb{C}1$ is a right coideal of B° and T is a W-submodule under the right adjoint action.
- For any quantum tangent space T, a right B-ideal of B^+ is given by

$$I := \{ b \in B^+ \mid X(b) = 0, \text{ for all } X \in T \}$$

Theorem (Heckenberger-Kolb, '03)

There is a bijective correspondence between isomorphism classes of finite-dimensional tangent spaces and finitely generated left A-covariant FODCi on B.

Series	$\mathcal{O}_q(G)$	Crossed node	$\mathcal{O}_q(G/L_S)$
A_n	$\mathcal{O}_q(\mathrm{SU}_{n+1})$	0-0	$\mathcal{O}_q(\mathrm{Gr}_{n+1,m})$
B_n	$\mathcal{O}_q(\mathrm{Spin}_{2n+1})$	•———	$\mathcal{O}_q(\mathbf{Q}_{2n+1})$
C_n	$\mathcal{O}_q(\mathrm{Sp}_n)$	OOO	$\mathcal{O}_q(\mathbf{L}_n)$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	• • • • • • • • • • • • • • • • • • • •	$\mathcal{O}_q(\mathbf{Q}_{2n})$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	· · · · · · · · · · · · · · · · · · ·	$\mathcal{O}_q(\mathbf{S}_n)$
E_6	$\mathcal{O}_q(E_6)$	○	$\mathcal{O}_q(\mathbb{OP}^2)$
E_7	$\mathcal{O}_q(E_7)$		$\mathcal{O}_q(\mathbf{F})$

Series	$\mathcal{O}_q(G)$	Crossed node	$\mathcal{O}_q(G/L_S)$
A_n	$\mathcal{O}_q(\mathrm{SU}_{n+1})$	O	$\mathcal{O}_q(\mathrm{Gr}_{n+1,m})$
B_n	$\mathcal{O}_q(\mathrm{Spin}_{2n+1})$	•———	$\mathcal{O}_q(\mathbf{Q}_{2n+1})$
C_n	$\mathcal{O}_q(\mathrm{Sp}_n)$	OOO	$\mathcal{O}_q(\mathbf{L}_n)$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	• • • • • • • • • • • • • • • • • • • •	${\mathcal O}_q({f Q}_{2n})$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	· · · · · · · · · · · · · · · · · · ·	$\mathcal{O}_q(\mathbf{S}_n)$
E_6	$\mathcal{O}_q(E_6)$	<u> </u>	$\mathcal{O}_q(\mathbb{OP}^2)$
E_7	$\mathcal{O}_q(E_7)$		$\mathcal{O}_q(\mathbf{F})$

• Heckenberger and Kolb shown (in '03) that quantised irreducible flag manifolds possess a canonical *q*-deformed analogue of the de-Rham complex for the underlying varieties.

Series	$\mathcal{O}_q(G)$	Crossed node	$\mathcal{O}_q(G/L_S)$
A_n	$\mathcal{O}_q(\mathrm{SU}_{n+1})$	O	$\mathcal{O}_q(\mathrm{Gr}_{n+1,m})$
B_n	$\mathcal{O}_q(\mathrm{Spin}_{2n+1})$	•	$\mathcal{O}_q(\mathbf{Q}_{2n+1})$
C_n	$\mathcal{O}_q(\mathrm{Sp}_n)$	OOO	$\mathcal{O}_q(\mathbf{L}_n)$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	• • • • • • • • • • • • • • • • • • • •	$\mathcal{O}_q(\mathbf{Q}_{2n})$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	· · · · · · · · · · · · · · · · · · ·	$\mathcal{O}_q(\mathbf{S}_n)$
E_6	$\mathcal{O}_q(E_6)$	○ ○ ○ ○ ○ ○	$\mathcal{O}_q(\mathbb{OP}^2)$
E_7	$\mathcal{O}_q(E_7)$		$\mathcal{O}_q(\mathbf{F})$

- Heckenberger and Kolb shown (in '03) that quantised irreducible flag manifolds possess a canonical *q*-deformed analogue of the de-Rham complex for the underlying varieties.
- Moreover, such calculi present a q-deformed Kähler geometry (Ó Buachalla '17).

Series	$\mathcal{O}_q(G)$	Crossed node	$\mathcal{O}_q(G/L_S)$
A_n	$\mathcal{O}_q(\mathrm{SU}_{n+1})$	O	$\mathcal{O}_q(\mathrm{Gr}_{n+1,m})$
B_n	$\mathcal{O}_q(\mathrm{Spin}_{2n+1})$	•	$\mathcal{O}_q(\mathbf{Q}_{2n+1})$
C_n	$\mathcal{O}_q(\mathrm{Sp}_n)$	OOO	$\mathcal{O}_q(\mathbf{L}_n)$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	•	$\mathcal{O}_q(\mathbf{Q}_{2n})$
D_n	$\mathcal{O}_q(\mathrm{Spin}_{2n})$	· · · · · · · · · · · · · · · · · · ·	$\mathcal{O}_q(\mathbf{S}_n)$
E_6	$\mathcal{O}_q(E_6)$	○	$\mathcal{O}_q(\mathbb{OP}^2)$
E_7	$\mathcal{O}_q(E_7)$		$\mathcal{O}_q(\mathbf{F})$

- Heckenberger and Kolb shown (in '03) that quantised irreducible flag manifolds possess a canonical *q*-deformed analogue of the de-Rham complex for the underlying varieties.
- Moreover, such calculi present a q-deformed Kähler geometry (Ó Buachalla '17).
- Question: do we have the same behaviour for the non-irreducible setting?

The action of the braid group on $U_a(\mathfrak{g})$

• A breakthrough result of Lusztig was to show that there is an action of the braid group on $U_q(\mathfrak{g})$:

$$B_{\mathfrak{g}} \to \operatorname{End}_{\operatorname{alg}}(U_q(\mathfrak{g})),$$

 $s_i \mapsto T_i.$

Definition (Lusztig)

Let W be the Weyl group of \mathfrak{g} , w_0 the longest element of W, and $w = w_{i_1} \cdots w_{i_n}$ a choice of reduced decomposition of w_0 . We consider

$$E_{\beta_r} = T_{i_1} T_{i_2} \cdots T_{i_{r-1}} (E_{i_r}), \qquad F_{\beta_r} = T_{i_1} T_{i_2} \cdots T_{i_{r-1}} (F_{i_r})$$

and call them quantum root vectors of $U_q(\mathfrak{g})$, or Lusztig root vectors.

The action of the braid group on $U_q(\mathfrak{g})$

ullet A breakthrough result of Lusztig was to show that there is an action of the braid group on $U_q(\mathfrak{g})$:

$$B_{\mathfrak{g}} \to \operatorname{End}_{\operatorname{alg}}(U_q(\mathfrak{g})),$$

 $s_i \mapsto T_i.$

Definition (Lusztig)

Let W be the Weyl group of \mathfrak{g} , w_0 the longest element of W, and $w = w_{i_1} \cdots w_{i_n}$ a choice of reduced decomposition of w_0 . We consider

$$E_{\beta_r} = T_{i_1} T_{i_2} \cdots T_{i_{r-1}} (E_{i_r}), \qquad F_{\beta_r} = T_{i_1} T_{i_2} \cdots T_{i_{r-1}} (F_{i_r})$$

and call them quantum root vectors of $U_q(\mathfrak{g})$, or Lusztig root vectors.

• We can use the result of Lusztig to build tangent spaces and thus differential calculi.

• Let w_0 be a fixed reduced decomposition of the longest element w_0 of the Weyl group of \mathfrak{g} .

- Let w_0 be a fixed reduced decomposition of the longest element w_0 of the Weyl group of \mathfrak{g} .
- Not all choices of reduced decomposition of the longest element of the Weyl/braid group are going to give a tangent space (in fact, most are not).

- Let w_0 be a fixed reduced decomposition of the longest element w_0 of the Weyl group of \mathfrak{g} .
- Not all choices of reduced decomposition of the longest element of the Weyl/braid group are going to give a tangent space (in fact, most are not).
- Those reduced decomposition giving rise to a quantum tangent space define a Lusztig differential calculus.

- Let w_0 be a fixed reduced decomposition of the longest element w_0 of the Weyl group of \mathfrak{g} .
- Not all choices of reduced decomposition of the longest element of the Weyl/braid group are going to give a tangent space (in fact, most are not).
- Those reduced decomposition giving rise to a quantum tangent space define a Lusztig differential calculus.

Fix now $\mathfrak{g} = \mathfrak{sl}(n)$ and consider $w_0 = (s_{n-1} \dots s_1) \dots (s_{n-2} s_{n-1}) s_{n-1}$ as reduced decomposition of the longest element of the Weyl group.

- Let w_0 be a fixed reduced decomposition of the longest element w_0 of the Weyl group of \mathfrak{g} .
- Not all choices of reduced decomposition of the longest element of the Weyl/braid group are going to give a tangent space (in fact, most are not).
- Those reduced decomposition giving rise to a quantum tangent space define a Lusztig differential calculus.

Fix now $\mathfrak{g} = \mathfrak{sl}(n)$ and consider $w_0 = (s_{n-1} \dots s_1) \dots (s_{n-2} s_{n-1}) s_{n-1}$ as reduced decomposition of the longest element of the Weyl group.

Theorem (Ó Buachalla, R., Somberg, P. '23)

• The space spanned by the positive Lusztig's root vectors corresponding to w_0 is a quantum tangent space for $\mathcal{O}_q(\mathrm{SU}(n))$, whose restriction to the case of quantum grassmannians gives the Heckenberger–Kolb quantum tangent space.

- Let w_0 be a fixed reduced decomposition of the longest element w_0 of the Weyl group of \mathfrak{g} .
- Not all choices of reduced decomposition of the longest element of the Weyl/braid group are going to give a tangent space (in fact, most are not).
- Those reduced decomposition giving rise to a quantum tangent space define a Lusztig differential calculus.

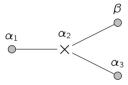
Fix now $\mathfrak{g} = \mathfrak{sl}(n)$ and consider $w_0 = (s_{n-1} \dots s_1) \dots (s_{n-2} s_{n-1}) s_{n-1}$ as reduced decomposition of the longest element of the Weyl group.

Theorem (Ó Buachalla, R., Somberg, P. '23)

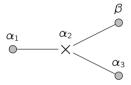
- The space spanned by the positive Lusztig's root vectors corresponding to w_0 is a quantum tangent space for $\mathcal{O}_q(\mathrm{SU}(n))$, whose restriction to the case of quantum grassmannians gives the Heckenberger–Kolb quantum tangent space.
- The restriction of the maximal prolongation of the corresponding differential calculus to the full flag manifold $O_q(F_n)$ has classical dimension.

• As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.

- As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.
- As a guiding example, take $\mathfrak{g} = \mathfrak{so}(8)$ with its D_4 Dynkin diagram:

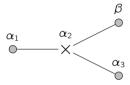


- As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.
- As a guiding example, take $\mathfrak{g} = \mathfrak{so}(8)$ with its D_4 Dynkin diagram:



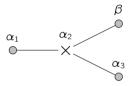
• The reduced expression $w_0 = s_4 s_3 s_2 s_4 s_3 s_2 s_1 s_2 s_4 s_3 s_2 s_1$ yields a quantum tangent space.

- As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.
- As a guiding example, take $\mathfrak{g} = \mathfrak{so}(8)$ with its D_4 Dynkin diagram:



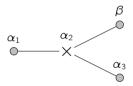
- The reduced expression $w_0 = s_4 s_3 s_2 s_4 s_3 s_2 s_1 s_2 s_4 s_3 s_2 s_1$ yields a quantum tangent space.
- For $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ we obtain the corresponding tangent space via the $U_q(\ell_S)$ -action on E_x .

- As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.
- As a guiding example, take $\mathfrak{g} = \mathfrak{so}(8)$ with its D_4 Dynkin diagram:



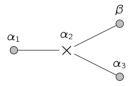
- The reduced expression $w_0 = s_4 s_3 s_2 s_4 s_3 s_2 s_1 s_2 s_4 s_3 s_2 s_1$ yields a quantum tangent space.
- For $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ we obtain the corresponding tangent space via the $U_q(\ell_S)$ -action on E_x .
- The restriction of the Lusztig differential calculus to the irreducible $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ flag replicates the Heckenberger–Kolb calculus.

- As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.
- As a guiding example, take $\mathfrak{g} = \mathfrak{so}(8)$ with its D_4 Dynkin diagram:



- The reduced expression $w_0 = s_4 s_3 s_2 s_4 s_3 s_2 s_1 s_2 s_4 s_3 s_2 s_1$ yields a quantum tangent space.
- For $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ we obtain the corresponding tangent space via the $U_q(\ell_S)$ -action on E_x .
- The restriction of the Lusztig differential calculus to the irreducible $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ flag replicates the Heckenberger–Kolb calculus.
- The relations of the maximal prolongation of the induced first-order calculus are conjectured to produce a q-deformed de-Rham complex on $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$.

- As a first goal we aim to extend the previous analysis to the non-irreducible quantum flag manifolds associated with one crossed Dynkin diagrams in the B, C and D series.
- As a guiding example, take $\mathfrak{g} = \mathfrak{so}(8)$ with its D_4 Dynkin diagram:



- The reduced expression $w_0 = s_4 s_3 s_2 s_4 s_3 s_2 s_1 s_2 s_4 s_3 s_2 s_1$ yields a quantum tangent space.
- For $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ we obtain the corresponding tangent space via the $U_q(\ell_S)$ -action on E_x .
- The restriction of the Lusztig differential calculus to the irreducible $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$ flag replicates the Heckenberger–Kolb calculus.
- The relations of the maximal prolongation of the induced first-order calculus are conjectured to produce a q-deformed de-Rham complex on $\mathcal{O}_q(\mathrm{SO}(8)/L_S)$.
- A parallel analysis is currently underway for $\mathfrak{g}=\mathfrak{sp}(4)$, with analogous partial results and expectations.