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Introductions and Motivations



Introduction and Motivations
• Holography of  dimensional bulk flat spacetime has seen an avalanche of work 

following up on the discovery of the IR triangle (Strominger [2013]; He, Lysov, Mitra, 
Strominger [2014]; Strominger [2014]; Pasterski [2015])


• Earlier work that predated this was done mostly in  dimensional bulk (Bagchi [2010]; 
Bagchi, Fareghbal [2012]; Bagchi, Detournay, Fareghbal, Simón [2012]; Barnich [2012])


• Given the robustness of AdS/CFT, one would hope a suitable large AdS radius limit, or 
equivalently a large  limit of the dual CFT, would uncover features of flat space 
holography.


• Historically, the large AdS radius limit has been used to extract flat space S-matrices: 
Polchinski [1999] and Susskind [1999] approached the problem from  of the CFT
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Introduction and Motivations
• Later work (Balasubramaniam, Giddings, Lawrence [1999]; Giddings [1999]; Gary, Giddings, 

Penedones [2009]) focussed on obtaining S-matrices in the bulk of AdS by carefully 
constructing scattering states (suitably defined) in AdS.


• Finally, all these works were generalized by Penedones [2010]: AdS Scattering amplitude 
was given by the Mellin space representation (Mack [2009]) of the CFT correlation functions. 
A suitable rescaling of this amplitude in the large AdS radius limit encoded the bulk S-matrix.


• These works don’t consider the dual boundary description of the emergent Poincaré 
symmetry in the bulk.


• Our work (Bagchi, PD, Dutta [2303.07388, 2311.11246]) attempts to address this question 
by considering AdS Witten diagrams following up on work done by de Gioia and Raclariu 
[2022].



Introduction and Motivations
• The asymptotic symmetries of  dimensional flat space are  (Bondi, Van der Burg, 

Metzner [1961] and Sachs [1962])


 form the Poincaré algebra. This algebra is isomorphic to the 
infinite dimensional lift of the conformal Carrollian algebra. A candidate dual to asymptotically 
flat holography.


Recent refs: Donnay, Fiorucci, Herfray, Ruzziconi [2022,2022]; Bagchi, Banerjee, Basu, Dutta 
[2022],…

3 + 1 BMS4

L0,±1, L̄0,±1, M00, M10, M01, M11

[Ln, Lm] = (n − m) Lm+n , [L̄n, L̄m] = (n − m) L̄m+n , [Mr,s, Mp,s] = 0 ,

[Ln, Mr,s] = ( n + 1
2

− r) Mr+n,s , [L̄n, Mr,s] = ( n + 1
2

− s) Mr,s+n



Introduction and Motivations
• Carroll algebra: Contraction of the Poincaré algebra ( )c → 0

xi → xi , t → ϵt , ϵ → 0

PC: Bagchi, Kolekar, Shukla [2023]

One can do a conformal extension

ds2 = lim
c→0

− c2dt2 + d ⃗x2 = 0.dt2 + d ⃗x2Carroll algebra is also an isometry algebra of 



Elements of Celestial & Carrollian 
Holography



How symmetries act on the null boundary
• For a massless particle reaching , the momenta  can be 

parametrized by it’s energy  and the angle on  





ℐ+ pμ

ω S2 (z, z̄)

pμ = ω (1 + zz̄, z + z̄, − i(z − z̄),1 − zz̄) , z =
p1 + ip2

p0 + p3

• Bulk Lorentz transformations  ~ Boundary  transformations


                   


Bulk translations  ~ Shifts in 


                  

Λ SL(2,ℂ)

p → Λp ⟹ z → z′￼ =
p′￼1 + ip′￼2

p′￼0 + p′￼3
=

az + b
cz + d

Xμ → X′￼μ = Xμ + ℓμ u

u → u′￼ = u + (ℓ0 + ℓ3) − (ℓ1 − iℓ2) z − (ℓ1 + iℓ2) z̄ + (ℓ0 − ℓ3) zz̄
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Quantities covariant under the symmetries
• One particle states  can be expressed as conformal primaries (

-Creation/annihilation operators) with  and 


                                                


                                  


• This establishes a Holographic correspondence through the Mellin transform (Pasterski, Shao, 
Strominger [2017]; Pasterski, Shao [2017])


                             


|pμ, σ⟩ = a†
p,σ |0⟩ ϵ = ± 1

Δ = h + h̄ σ = h − h̄

𝒪ϵ
h,h̄(z, z̄) = ∫

∞

0
dω ωΔ−1 a(ϵω, z, z̄, σ)

𝒪′￼ϵ
h,h̄(z, z̄) =

1
(cz + d)2h

1
(c̄z̄ + d̄)2h̄

𝒪ϵ
h,h̄ ( az + b

cz + d
,

āz̄ + b̄
c̄z̄ + d̄ )

⟨𝒪ϵ1
h1,h̄1

(z1, z̄1) 𝒪ϵ2
h2,h̄2

(z2, z̄2)…⟩ = ∫
n

∏
i=1

dωi ωΔi−1
i 𝒮n({ωi, zi, z̄i, σi})
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Issues of covariance under translations
• Consider time translations generated by the Hamiltonian 


Thus, even though the bulk Lorentz group acts as , the action of translations shifts 
the conformal dimension!


• The tree level graviton amplitudes are UV divergent in the Mellin basis (Stieberger, Taylor 
[2018]; Puhm [2019]).

H

SL(2,ℂ)

δH𝒪ϵi
hi,h̄i

(zi, z̄i) = ∫
∞

0
dωi ωΔi−1

i [H, a(ϵiωi, zi, z̄i, σi)]

= ∫
∞

0
dωi ωΔi−1

i [−ϵiωi(1 + ziz̄i)]a(ϵiωi, zi, z̄i, σi)

= − ϵi(1 + ziz̄i)𝒪
ϵi

hi+ 1
2 ,h̄i+ 1

2
(zi, z̄i)
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Remedy: Null time evolution
• Consider the time evolution of the operator  by Hamiltonian 


Here . This still transforms as a  primary (Banerjee [2018]) but now with 
the advantage that it is covariant under translations


One can propose a modified Mellin transform (Bagchi, Banerjee, Basu, Dutta [2022]) using 
these new “Carrollian primaries”

𝒪h,h̄(z, z̄) H

u = U(1 + zz̄) SL(2,ℂ)

Φϵ
h,h̄(u, z, z̄) = e−iHU𝒪h,h̄(z, z̄)eiHU = ∫

∞

0
dω ωΔ−1 e−iϵωua(ϵω, z, z̄)

Φϵ
h,h̄(u, z, z̄) → Φ′￼ϵ

h,h̄(u′￼, z′￼, z̄′￼) = Φϵ
h,h̄(u + p + qz + rz̄ + szz̄, z, z̄)

⟨Φϵ1
h1,h̄1

(u1, z1, z̄1) Φϵ2
h2,h̄2

(u2, z2, z̄2)…⟩ = ∫
n

∏
i=1

dωi ωΔi−1
i e−iϵiωiui 𝒮n
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An example of a Carrollian primary
• Consider the modified Mellin transform of a plane wave in Minkowski space propagating along a 

null direction :  in the parametrization discussed above


These wavefunctions satisfy  for a fixed . They transform as Carrollian 
primaries under bulk Lorentz transformations and translations (Banerjee [2018]).


• Modified Mellin transformation facilitates a basis change from plane waves (used to scatter in S-
matrix) to conformal Carrollian primaries (used to construct operators within correlation functions).

qμ e±iω q⋅x

□ Φ±
Δ(xμ |u, z, z̄) = 0 u

Φ±
Δ(xμ |u, z, z̄) = ∫

∞

0
dω ωΔ−1e±iωue−ϵω e±iω q⋅x

=
(∓i)ΔΓ(Δ)

(−q ⋅ x − u ∓ iϵ)Δ
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Carroll 2 point function from the S-matrix
• The two point free theory Scattering amplitude is


The modified Mellin transformation of this amplitude is given by


This result agrees with what one gets from the Carrollian Ward identities (Bagchi, Banerjee, Basu, 
Dutta [2022])

⟨p1, σ1 |p2σ2⟩ = (2π)3 2Ep1
δ(3)( ⃗p1 − ⃗p2) δσ1+σ2,0

= 4π3 δ(ω1 − ω2) δ2(z1 − z2)
ω1

δσ1+σ2,0

= 4π3Γ(Δ1 + Δ2 − 2)
δ2(z2 − z1)

(i(u1 − u2))Δ1+Δ2−2
δσ1+σ2,0

4π3δσ1+σ2,0 ∫
∞

0
dω1 dω2 ωΔ1−1

1 ωΔ2−1
2 e−iω1u1eiω2u2

δ(ω1 − ω2) δ2(z1 − z2)
ω1
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A vanilla boundary theory
• The holographic aspect: One can derive the correlator from an explicit boundary theory


This theory is invariant under  symmetries. The green’s function for the theory is computed from


For the massless Carrollian scalar field,  : Matches with the two point function.The  function 

makes the correlator ultra-local in the sphere directions. This is unlike the standard CFT 2-point function (which also 
respects the  symmetries). Time-dependent correlation functions ~ Dynamics!


BMS4

h, h̄ =
1
4

δ(2)(zi − z′￼i)

BMS4

S = ∫ du d2z
1
2

(∂uΦ(u, z, z̄))2

∂2
uG(u − u′￼, zi − z′￼i) = δ(3)(u − u′￼, zi − z′￼i)

G(u − u′￼, zi − z′￼i) = −
i
2

(u − u′￼) δ(2)(z − z′￼, zi − z′￼i)

G(u, z, z̄, u′￼, z′￼, z̄′￼i) =
δh,h′￼

δh̄,h̄′￼

(z − z′￼)2h (z̄ − z̄′￼)2h̄
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Flat limit of AdS/CFT



Recap: AdS in embedding space
:  is embedded in  (Ref: Penedones 

[2007])


AdSd+1 −(X0)2 − (X1)2 +
d+1

∑
i=2

(Xi)2 = − R2 ℝ1,1 × ℝ1,d−1

ds2 = − dX+dX− − (dX1)2 +
d

∑
i=2

(dXi)2

X+ = −
R(cos τ − sin ρ Ωd+1)

cos ρ
, X− = −

R(cos τ + sin ρ Ωd+1)
cos ρ

,

X1 = −
R sin τ
cos ρ

, Xi = R tan ρ Ωi , i = 2,…, d

X± = X0 ± Xd+1 , Ωi ∈ Sd−1
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Recap: AdS in embedding space

• The metric becomes (  and  )


• One can reach the boundary through (here )

τ ∈ (−∞, ∞) ρ ∈ [0,
π
2

)

p2 = 0

ds2 =
R2

cos2 ρ (−dτ2 + dρ2 + sin2 ρ dΩ2
Sd−1)

p = lim
ρ→ π

2

1
2

R−1 cos ρ X

ds2
CFT = − dτ2 + dΩ2

d−1

τ
ρ

18



• Implement the following rescaling (Giddings [1999])

Flat limit in the bulk

τ =
t
R

, ρ =
r
R

, R → ∞

ds2 =
R2

cos2 r
R

(−
dt2

R2
+

dr2

R2
+ sin2 r

R
dΩ2

Sd−1)
ds2 limR→∞ − dt2 + dr2 + r2dΩ2

• In dimensionless coordinates, the limit is really  and , which effectively zooms 
into the centre of AdS.

τ → 0 ρ → 0
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• We track the retarded time of the emergent flat space


Fixing  as we let  leads to the null boundary of flat space. We aim to establish a 

relationship between  and AdS boundary time . The AdS boundary is reached by 

u t, r → ∞
u τp ρ →

π
2

Flat limit in the boundary

u = t − r = R (τ − ρ)

u = R (τp −
π
2 ) ⟹ τp =

π
2

+
u
R

ds2
CFT = −

1
R2

du2 + dΩ2
R → ∞

ds2
CFT = 0.du2 + dΩ2

CFT boundary metric Null Carrollian metric

c =
1
R

→ 0
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Celestial vs Carrollian perspectives
• de Gioia and Raclariu [2022] considered operator insertions at 


Spheres at  are antipodally identified.


• We (Bagchi, PD, Dutta [2303.07388]) consider a generalization of the boundary insertions that 
keeps track of the emergent null direction:


Spheres at  are antipodally identified. This identification was later suggested by an 

analysis of CFT vector fields in the large  limit (de Gioia and Raclariu [2023]).

τ = ± π
2

τ = ± π
2

τ = ± π
2

+
u
R

R

AdS Witten diagrams Celestial Amplitudes
R → ∞

(τ = ± π
2 )

AdS Witten diagrams (τ = ± π
2

+
u
R )

R → ∞
Carrollian Amplitudes
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Celestial vs Carrollian perspectives
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Bulk to boundary propagator is the conformal primary
• The bulk to boundary propagator  in the embedding space is given by (Penedones 

[2010])


Consider the bulk point  to be within the emergent flat diamond and the boundary point  to 
be within the band . In the large  expansion,


,  (i.e.)  is a null vector in the direction of the boundary point 
 


This is clearly the conformal Carrollian primary wave function we have seen before!

KΔ(p, x)

x p
τ = +

π
2

+
u
R

R

x = (t, rΩ) q̃+ = (1,Ωp) ∈ ℝ1,d q̃+

p (τp, Ωp)

KΔ(p, x) =
Cd

Δ

(−2p ⋅ x + iϵ)Δ

KΔ(p, x) = Cd
Δ ( 1

(−u − q̃+ ⋅ x + iϵ)Δ
+ 𝒪(R−1)) (Outgoing)

23



Bulk to boundary propagator is the conformal primary
• If however, the insertion point is at , we have


Where crucially  which is given by the antipodal matching condition


• The bulk to boundary propagator in the large  limit is a Carrollian primary


τ = −
π
2

+
u
R

q̃− = (1,ΩA
p)

R

KΔ(p, x) = Cd
Δ ( 1

(u + q̃− ⋅ x + iϵ)Δ
+ 𝒪(R−1))

ΩA
p = − Ωp

KΔ(p, x) = Nd
Δ ∫

∞

0
dω ωΔ−1e∓iωue∓iω q̃±⋅xe−ϵω

(Ingoing)
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Example: Scalar 2 point function

• Inserting  at  (ingoing) and  at  (outgoing), we get the time 

dependent Carrollian correlation functions in the large  limit


Integration over  ensures momentum conservation ~ Ultra-locality

p1 τp = −
π
2

+
u1

R
p2 τp =

π
2

+
u2

R
R

x

⟨OΔ1
(p1)OΔ2

(p2)⟩ = ∫AdS4

d4x KΔ1
(p1, x) KΔ2

(p2, x)

⟨OΔ1
(p1)OΔ2

(p2)⟩ = 𝒜
δ2(z2 − z1)

(i(u2 − u1))Δ1+Δ2−2
, 𝒜 ∼

Γ(Δ1 + Δ2 − 2)
R2−(Δ1+Δ2)

∝ ∫ dω1 dω2 ωΔ1−1
1 ωΔ2−1

2 eiω1u1−iω2u2 e−ϵ(ω1+ω2) ∫ d4x ei(ω1q̃−−ω2q̃+)⋅x

∝ ∫ d4x∫ dω1 ωΔ1−1
1 eiω1u1 eiω1q̃−⋅x e−ϵω1 ∫ dω2 ωΔ2−1

2 e−iω2u2 e−iω2q̃+⋅x e−ϵω2
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Kinematics of three point functions
• One cannot have momentum conservation in  with three null momenta. Suppose if you 

have  with ,


This is satisfied only when  (collinear limit) or  (soft limit).


• Alternatively, we could also work in the split signature where  and  are independent 
(Pasterski, Shao, Strominger [2017]). This corresponds to complexifying the momenta

ℝ1,3

δ(4)(ω1q̃1 + ω2q̃2 − ω3q̃3) q̃2
i = 0

q̃1 ⋅ q̃2 = 0 ω1,2 = 0

z z̄

(ω1q̃1 + ω2q̃2)2 = 2ω1ω2q̃1 ⋅ q̃2 ≠ ω2
3 q̃2

3

δ(4)(ω1q̃1 + ω2q̃2 − ω3q̃3) =
4

ω2
3z23z31

δ (ω1 − ω3
z32

z12 ) δ (ω2 − ω3
z31

z21 ) δ(z̄13)δ(z̄23)
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Example: Scalar three point function (collinear limit)
• Lorentz invariant split of the delta function


Inserting ,  and  in the band around  and performing the integral over 


Agrees with the Carrollian Ward identities. See also (Nguyen [2023])

p1 p2 p3 τ = ± π
2

x

δ(4)(ω1q̃1 + ω2q̃2 − ω3q̃3) =
1

ω3
3

δ(ω1 + ω2 − ω3) δ(z12) δ(z̄12) δ(z13) δ(z̄13)

⟨OΔ1
(p1)OΔ2

(p2)OΔ3
(p3)⟩ = ∫AdS4

d4x KΔ1
(p1, x)KΔ2

(p2, x)KΔ3
(p3, x)

𝒜(3) δ2(z12) δ2(z13)
Δ3−4

∑
k=0

Δ3−4Ck Γ(k + Δ1) Γ(Δ2 + Δ3 − k − 4)
(i u31)Δ1+k (i u32)Δ2+Δ3−4−k
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Example: Scalar 3 point function (soft limit)
• The Lorentz invariant split for the soft limit


Due to the crucial soft factor , we get a restriction on δ(ω2) Δ2

δ(4)(ω1q̃1 + ω2q̃2 − ω3q̃3) =
1

ω2
3

1
z12z̄12

δ(ω2) δ(ω1 − ω3) δ(z13) δ(z̄13)

∫
∞

0
dω2 ωΔ2−1

2 eiω2u2 δ(ω2) = δΔ2,1

⟨OΔ1
(p1)OΔ2

(p2)OΔ3
(p3)⟩ = 𝒜(3)s

Γ(Δ1 + Δ3 − 3) δΔ2,1 δ2(z13)
(i u13)Δ1+Δ3−3 z12 z̄12
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Generalization to spinning particles
• The bulk to boundary propagator of a spin  particle with dimension  is given by 


 are the embedding space indices,  denotes the bulk coordinates and  denotes the 
boundary coordinates.  denotes the symmetric traceless component. To implement the 
flat limit, we first rescale the  and  such that  runs over  and  runs over  
(de Gioia, Raclariu [2023]).

J Δ

Ai, Bi μi νi

{ . }
μi νi μi (t, rΩ) νi (u, Ω)

KΔ,J
⃗μ, ⃗ν (p, x) = CΔ;J ∂μ1

XA1…∂μJ
XAJ ∂ν1

PB1…∂νJ
PBJ

I{A1;{B1
(X; P)…IAJ};BJ} (X; P)

(−P ⋅ X + iϵ)Δ

IA;B (X; P) =
−P ⋅ XηAB + PAXB

−P ⋅ X + iϵ



Example: Gluon 3 point function
• Spinning bulk to boundary propagator  in the large  limit:


Gluon amplitude from loop corrections of the form :  . Three point function 
with the vertex factor (Bagchi, PD, Dutta [2311.11246]) is given below. See also (Salzer 
[2023]).

KΔ,1
μ,ν (p, x) R

F3 f abcFaμ
νFbν

ρFcρ
μ

KΔ,1
μ,a = Cd

Δ;1
Δ − 1

Δ

±∂aq̃μ

(∓u ∓ q̃ ⋅ x + iϵ)Δ

⟨OΔ1;ν1
(p1)OΔ2;ν2

(p2)OΔ3;ν3
(p3)⟩ = ∫ d4x KΔ1,1

μ1;ν1
(p1, x) KΔ2,1

μ2;ν2
(p2, x) KΔ3,1

μ3;ν3
(p3, x)Vμ1μ2μ3

3g

∂z̄1
q̃1μ1

∂z̄2
q̃2μ2

∂z̄3
q̃1μ3

Vμ1μ2μ3
3g ≠ 0 ( − − − ) amplitude

⟨OΔ1;z̄1
(p1)OΔ2;z̄2

(p2)OΔ3;z̄3
(p3)⟩ ∝ f abc zΔ3

12 zΔ1
32 zΔ2

31 Γ(Δ1 + Δ2 + Δ3 − 1) δ(z̄13) δ(z̄23)
[−i(z1u23 + z2u31 + z3u12)]Δ1+Δ2+Δ3−1
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Conclusions



Conclusions
• We have argued that if one keeps track of the emergent null direction, AdS Witten diagrams 

naturally reduce to time dependent correlation functions in the leading order of the large 
AdS radius limit.


• The action of translations is more natural in the modified Mellin basis. As a result, graviton 
amplitudes are UV finite (Banerjee, Ghosh, Pandey, Saha [2019]).


• One can explicitly compute the  limit of CFT correlation functions to arrive at these 
time dependent Carrollian correlators (Alday, Nocchi, Ruzziconi, Yelleshpur Srikant [2024])


• A differential representation for Carrollian correlators from the flat limit of the differential 
representation of AdS Witten diagrams (Chakrabortty, Hegde, Maurya [2024])


• Flat limit of ABJM (Lipstein, Ruzziconi, Yelleshpur Srikant [2025])


• Flat limit of AdS Witten diagrams in 3 dimensions and an analysis of the bulk point 
singularity (Surubaru, Zhu [2025])

c → 0
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Conclusions and closing comments
• Flat space limit of AdS Witten diagrams in general dimensions (Kulkarni, Ruzziconi, 

Yelleshpur Srikant [2025]) - See Romain’s talk


• These works make use of the map between the S-matrix and Carrollian correlation 
functions. However, it is a work in progress to understand if these correlation functions are 
truly expectation values of operators acting on a Hilbert space.


• Quantum effects of Carroll theories have been studied in (Bagchi, Banerjee, Basu, Islam, 
Mondal [2022]; Mehra, Sharma [2023]; Banerjee, Basu, Krishnan, Maulik, Mehra, Ray 
[2023]; Figueroa-O’Farrill, Pérez, Prohazka [2023]; de Boer, Hartong, Obers, Sybesma, 
Vandoren [2023]; Chen, Sun, Zheng [2024]; Cotler, Jensen, Prohazka, Raz, Riegler, Salzer 
[2024]; Cotler, PD, Jensen [2025])
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Thank you for your attention


