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» Asymptotically-flat spacetimes allow to idealize isolated gravitating systems in GR

e They played a key role in the conceptual and physical understanding of gravitational radiation
[Ashtekar, Bondi, Geroch, Hansen, Metzner, Newman, Penrose, Sachs, Trautman, van der Burg, . ..]
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They played a key role in the conceptual and physical understanding of gravitational radiation
[Ashtekar, Bondi, Geroch, Hansen, Metzner, Newman, Penrose, Sachs, Trautman, van der Burg, ...]

Radiative asymptotically-flat spacetimes have very interesting properties: infrared triangle
- memory effects [Blanchet, Christodoulou, Damour, Polnarev, Thorne, Zel'dovich]
- oo-dimensional asymptotic symmetries [Bondi, Metzner, Sachs, van der Burg]
- link with the S-matrix and soft theorems [Weinberg, Low]

e There is now evidence that subleading triangles also exist [Barnich, Cachazo, Campiglia, Compere,
Conde, Fiorucci, Freidel, Laddha, Mao, Pasterski, Ruzziconi, Strominger, Troessaert, Zhiboedov, ...]

* What is the classical (geometric, algebraic) structure underlying flat space holography?
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« It is very convenient to work with an explicit choice of gauge and coordinates

2/10



Asymptotically-flat spacetimes
Bondi parametrization [Bondi, van der Burg, Metzner, Sachs, Tamburino, Winicour,

N

« It is very convenient to work with an explicit choice of gauge and coordinates
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- Oux® is constant along the null rays = ¢g“% =0
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* The Einstein equations are organized into a so-called Bondi hierarchy
- radial equations (determine the r behavior of U, W, X% up to integration constants)
- evolution equations (e.g. the Bondi—Trautman mass loss)
- trivial equations (from the Bianchi identities)
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2 ab
= +7Caqp + Doy + 2 —_—
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* The Einstein equations are organized into a so-called Bondi hierarchy
- radial equations (determine the r behavior of U, W, X% up to integration constants)
- evolution equations (e.g. the Bondi—Trautman mass loss)
- trivial equations (from the Bianchi identities)
« Near Zt, a lot of precious information can be extracted
- asymptotic symmetries, transformation laws, charges and their algebra, . ..
- flux-balance laws, memory effects, ...
- link with numerical relativity, waveforms, ...
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« Within the Bondi formalism, one can choose different radial coordinates, e.g.
- Bondi-Sachs gauge: det(v4,) = r* det(qqp) and r is the areal distance
- Newman-Unti gauge: gy = —1 and r is the affine parameter for { = 0,
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Laddha, Nichols, Oliveri, Pranzetti, Speziale, Trossaert, . ..]

- Ouqap # 0 (useful for Robinson—Trautman and (A)dS radiation) [Adami, Barnich, Ciambelli,
Compére, Hoque, Kutluk, Pavizi, Petkou, Petropoulos, Seraj, Sheikh-Jabbari, Siampos, Taghiloo, . ..]
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- further integration constants, e.g. X§ (useful for (A)dS radiation or shockwaves)
[Bonga, Bunster, MG, He, McNees, Perez, Raclariu, Zurek, Zwikel, .. .]
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- asymptotically-FLRW spacetimes [Bonga, Enriquez-Rojo, Heckelbacher, Oliveri, Prabhu, .. .]
- Starobinski—Fefferman—Graham gauge [Pool, Skenderis, Taylor, Compeére, Fiorucci, Ruzziconi]
- de Donder (harmonic) gauge for computations near the source (e.g. MPMPN formalism)
[Blanchet, Compeére, Faye, Oliveri, Seraj]
* The mapping between gauges is subtle due to the field-dependency of the diffeomorphism, e.g.
[Compere, Long] [Ciambelli, MG] B
£ = T (" + bea®)
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An inconvenience of the Bondi gauge

* Kerr metric has g # 0 in Boyer—Lindquist or grq # 0 in Eddington—Finkelstein coordinates
¢ Bringing it in Bondi form introduces an infinite 1/r expansion [Fetcher, Lun] [Hoque, Virmani]
* Same issue with e.g. supertranslated Schwarzschild [Compere, Long] (more on that later)
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{=0, n=W0, +Ud + X%, m = wdy + m*0,

to build the Newman—Penrose (NP) formalism, we get
- Wy # 0 contains the angular momentum
- W # 0 since Kerr has Cyp # 0 and subleading terms in Bondi gauge

* But the principal null directions of Kerr have twist and do not generate null hypersurfaces!

Kerr is type D algebraically special, so with a PND aligned tetrad we have Yo = ¥; =0
+ This motivates us to introduce the twist, i.e. Im(p) # 0

¢ This means merging Bondi with [Chandrasekhar] [Stephani, Kramer, MacCallum, Hoenselaers, Herlt]

p=mtm*Val, G [ % ‘/}arg ¢
o =mtrmVul,

Re p Im p
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* The twist is sourced by grq = Lq # 0 in the Bondi metric
e Such terms in the Bondi metric have appeared recently in
- 3d derivative expansion [Ciambelli, Marteau, Petropoulos, Ruzziconi|

- 4d covariant Newman—Unti [Campoleoni, Delfante, Pekar, Petropoulos, Rivera-Betancour, Vilatte]
- 4d Carroll covariant Bondi—Sachs gauge [Hartong, Have, Nenmeli, Oling]

» The motivation of these works was to restore Carroll covariance on Z1 and define an EMT
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Solving the Einstein equations in NP form is extremely efficient, but obscures a few things
- the nature of the gauge and no-log conditions, and the Bondi hierarchy of equations
- the extension of the “familiar” Bondi expressions to L # 0
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» One can always solve the NP equations with Kk = e =7 =0, so that ¥V, e =0
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Solution space in NP form
» One can always solve the NP equations with Kk = e =7 =0, so that ¢#V,e =0
¢ The key features are that

- peeling is preserved

- the twist enters 265 = DL — DL = i(D® + L%,)La and Im(p) = &

- the 0 operator is replaced by ® = 3 — 2sy9L + L0,

- we have kept 7o = 9y In /g to include e.g. Robinson—Trautman

- when 9 = 0 the 10 exactly conserved NP charges can be generalized
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Solution space in NP form
» One can always solve the NP equations with kK =€ =7 =0, so that /#V, e =0
* The key features are that

- peeling is preserved

- the twist enters 2i% = DL — DL = i(D® + L*d,) Lo and Im(p) = &

- the 0 operator is replaced by B =9 — 2sygL + L0y

- we have kept 9 = 0y In /g to include e.g. Robinson—Trautman

- when 9 = 0 the 10 exactly conserved NP charges can be generalized

Solution space in metric form
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* The gauge fixing is complete, and the gauge conditions are
- grr=20
- Re(e) = 0, which implies the Newman-Unti gauge condition gy, = —1 } et —o
- k=R =0, which implies 8,Lq = 0 "
* Explicit knowledge of the transverse metric v,; with trace and no-log conditions
« Complete control over the Bondi hierarchy of Einstein equations (radial / evolution / trivial)

* Flux-balance laws in “familiar form”, e.g. when v9 =0 = 9, L

1 1
0L F = -5 W N 4 5Daj‘l E := M + complicated
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Twisting asymptotically-flat spacetimes

Asymptotic symmetries

 Following the usual construction (i.e. preserving the gauge and the fall-offs) we find
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* Because of (x), imposing these (physically constraining) conditions requires to set T = 0

« The asymptotic Killing vectors truncate and reduce to
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¢ The solution space truncates as well!
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* Everything can easily be inferred by reducing the algebraically general solution space
¢ At the end of the day, the solution space is controlled by
- time-dependent twist L (u,x?) and dyad (or celestial metric) m®(u, z®)

- the mass Re(\Ilg) subject to constraints and an evolution equation
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* One can easily compute the charges for any such algebraically special solution
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Twisting asymptotically-flat spacetimes

Supertranslated Schwarzschild

« Simple example: finitely supertranslated Schwarzschild obtained by u +— u — C(x%)

ds? = — (1 - %) (du — dC)2?—2(du — dC)dr + r2dQ?

A

oM
=— (1 - —) du? — 2dudr + r2dQ?
T

+ {2 (1 — %> du + 2dr — (1 — &) c%Cdxa] (BaCdza)
r r
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* The supertranslation produces a gro # 0, and therefore takes us out of the usual Bondi gauge
¢ The metric can be written in isotropic coordinates [Compere, Long]

e It also fits naturally in the twisting Bondi gauge

Lg = 0,C
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e This can also be done for e.g. supertranslated Kerr—Taub—NUT, where ¥ = acosf — n
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* The charges have a non-zero superrotation [Hawking, Perry, Strominger] [Compeére, Long]

Q= 7{ dS? (f + Y"9,C)M
S

e This can also be done for e.g. supertranslated Kerr—Taub—NUT, where ¥ = acosf — n

NB: the tetrad can further be Lorentz transformed to the so-called Kinnersley tetrad (type D)
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* Complete NP and metric characterization of the algebraically general solution space with twist
« Natural reduction to the algebraically special solutions
» 3d version with A # 0 straightforward
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Perspectives

 Study the various extensions mentioned previously (e.g. 4d A # 0, logs, FLRW, matter, ...)
* Near-horizon construction in the algebraically general case, link with isolated horizons

* Detailed study of the charges in the algebraically special case

Bringing radiative solutions from harmonic gauge to Bondi with twist (simpler than [BCFOS]|?)

» Useful for numerical relativity?

Coordinate-free statements a /a Geroch
* Subleading symmetries and w1 oo

Interplay between asymptotic symmetries and Killing—St&ckel/Yano tensors, e.g. for type D

Ky =2(r2 + EQ)Z(Mn,,) + 729,
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Thanks for your attention!
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