Horizons in flat space holography A Carrollian Vision

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

ICMS, Edinburgh, September 2025

Three foci in this session

1. Asymptotic symmetries (Laura Donnay): BMS, Hilbert space of UIRs, S-matrix construction

Three foci in this session

- Asymptotic symmetries (Laura Donnay):
 BMS, Hilbert space of UIRs, S-matrix construction
- 2. **Boundary operators (Shamik Banerjee)**: Operator definitions on \mathscr{I} ; celestial + stringy hints

Three foci in this session

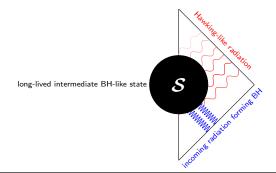
- Asymptotic symmetries (Laura Donnay): BMS, Hilbert space of UIRs, S-matrix construction
- 2. **Boundary operators (Shamik Banerjee)**: Operator definitions on \mathscr{I} ; celestial + stringy hints
- 3. Horizons (this talk): What is the holographic imprint of a dynamical horizon in asymptotically flat space?

Reminder: holography emerged from BH thermodynamics

$$S_{\mathrm{BH}} = rac{A}{4}$$

- Reminder: holography emerged from BH thermodynamics
- ► Holography à la 't Hooft–Susskind should explain spacetimes with horizons: entropy, information flow, evaporation, ...

- Reminder: holography emerged from BH thermodynamics
- ► Holography à la 't Hooft–Susskind should explain spacetimes with horizons: entropy, information flow, evaporation, ...
- AdS/CFT: understand several aspects of BHs
 - eternal BH in AdS = thermal equilibrium in CFT
 - ► AdS BH formation = thermalization (QGP formation from colliding shockwaves)
 - Hawking-Page phase transition = (de)confinement phase transition
 - AdS BH perturbations = relaxation process in dual plasma $(\frac{\eta}{s} = \frac{1}{4\pi})$
 - ▶ information not lost since dual CFT unitary (at arbitrary finite N)
 - information lost in strict large N limit (large N factorization)
 - AdS BH microstate counting from Cardyology
 - AdS BHs saturate chaos bound
 - AdS BHs are fast scramblers
 - ▶ AdS BH interior: entanglement, bulk reconstruction & (no) firewalls
 - ► AdS BHs suggest ER = EPR
 - ► Page curve from quantum extremal surfaces (island proposal)
 - AdS BH holographic complexity = computational difficulty in CFT
 - **-** ...


- Reminder: holography emerged from BH thermodynamics
- ► Holography à la 't Hooft–Susskind should explain spacetimes with horizons: entropy, information flow, evaporation, ...
- ► AdS/CFT: understand several aspects of BHs
- ▶ Question for flat space: what is description of BHs in dual QFT?

Possible answers:

- Reminder: holography emerged from BH thermodynamics
- ► Holography à la 't Hooft–Susskind should explain spacetimes with horizons: entropy, information flow, evaporation, ...
- AdS/CFT: understand several aspects of BHs
- Question for flat space: what is description of BHs in dual QFT?

Possible answers:

 $lackbox{ }$ Celestial amplitudes: formation & evaporation of BH = huge ${\cal S}$ -matrix

- Reminder: holography emerged from BH thermodynamics
- Holography à la 't Hooft-Susskind should explain spacetimes with horizons: entropy, information flow, evaporation, ...
- ► AdS/CFT: understand several aspects of BHs
- ▶ Question for flat space: what is description of BHs in dual QFT?

Possible answers:

- lacktriangle Celestial amplitudes: formation & evaporation of BH = huge ${\cal S}$ -matrix
- Carroll CFT: eternal black hole (cosmology) is Carroll thermal state

- Reminder: holography emerged from BH thermodynamics
- ► Holography à la 't Hooft–Susskind should explain spacetimes with horizons: entropy, information flow, evaporation, ...
- ► AdS/CFT: understand several aspects of BHs
- ▶ Question for flat space: what is description of BHs in dual QFT?

Possible answers:

- lacktriangle Celestial amplitudes: formation & evaporation of BH = huge ${\cal S}$ -matrix
- Carroll CFT: eternal black hole (cosmology) is Carroll thermal state

Focus first on spacetimes with eternal horizons and then on dynamics

Carroll limit: ultra-relativistic contraction of Poincaré

- Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian

- Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension

- ► Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension
- celestial amplitudes = (electric) Carrollian correlators

- Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension
- celestial amplitudes = (electric) Carrollian correlators
- observables related to horizons = (magnetic) Carrollian correlators (at least in 2+1)

- ► Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary $\mathscr I$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension
- celestial amplitudes = (electric) Carrollian correlators
- ▶ observables related to horizons = (magnetic) Carrollian correlators
- ► Flat/Carroll from AdS/CFT: limit often works but always subtle

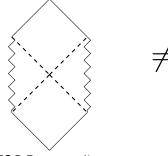
- ► Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension
- celestial amplitudes = (electric) Carrollian correlators
- ightharpoonup observables related to horizons = (magnetic) Carrollian correlators
- ► Flat/Carroll from AdS/CFT: limit often works but always subtle
- ▶ ChatGPT fantasy: celestial CFT \approx representation/kinematics Carroll CFT \approx dynamics/hydrodynamics on \mathscr{I}

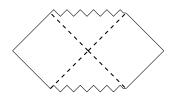
- ► Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension
- celestial amplitudes = (electric) Carrollian correlators
- ightharpoonup observables related to horizons = (magnetic) Carrollian correlators
- ► Flat/Carroll from AdS/CFT: limit often works but always subtle
- ▶ ChatGPT fantasy: celestial CFT \approx representation/kinematics Carroll CFT \approx dynamics/hydrodynamics on \mathscr{I}
- ightharpoonup horizons \mathscr{H} also naturally Carrollian (null hypersurfaces)

- ► Carroll limit: ultra-relativistic contraction of Poincaré
- lacktriangle asymptotic boundary ${\mathscr I}$ is naturally Carrollian
- ▶ BMS/Carroll CFT correspondence: BMS asymptotic symmetries = Carroll conformal symmetries in one lower dimension
- celestial amplitudes = (electric) Carrollian correlators
- ightharpoonup observables related to horizons = (magnetic) Carrollian correlators
- ► Flat/Carroll from AdS/CFT: limit often works but always subtle
- ▶ ChatGPT fantasy: celestial CFT \approx representation/kinematics Carroll CFT \approx dynamics/hydrodynamics on \mathscr{I}
- ightharpoonup horizons \mathscr{H} also naturally Carrollian (null hypersurfaces)
- ▶ my phantasy: RG-flow in Carroll CFT from 𝒯 to 𝒯 allows isolating horizon degrees of freedom as specific states in Carroll CFT

electric sector of Carroll CFT: scattering data magnetic sector of Carroll CFT: horizon data

Copy-and-paste AdS list:


eternal BH in AdS = thermal equilibrium in CFT


Status in flat space: we do not know

(in 2+1 this works for flat space cosmologies and Carroll CFT $_2$)

(in 1+1 this sort of works for CJ/charged SYK)

Note:

SBH Penrose slice

FSC Penrose slice

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ightharpoonup Hawking-Page phase transition = (de)confinement phase transition

Status in flat space: we do not know

(in 2+1 this works for flat space cosmologies and (holographic) Carroll CFT)

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ► Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ► Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ightharpoonup Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ightharpoonup information lost in strict large N limit

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ► Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ▶ information lost in strict large N limit
- AdS BH microstate counting from Cardyology

Status in flat space: we know a tiny bit

(in 2+1 this works for flat space cosmologies and Carroll CFT $_2$)

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- ► AdS BH formation = thermalization
- ► Hawking—Page phase transition = (de)confinement phase transition
- ▶ AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound

Status in flat space: we know a tiny bit

(in 2+1 this works for flat space cosmologies and Carroll CFT2)

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ightharpoonup Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ightharpoonup information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound
- AdS BHs are fast scramblers

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- ► AdS BH formation = thermalization
- ► Hawking-Page phase transition = (de)confinement phase transition
- ► AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ightharpoonup information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound
- AdS BHs are fast scramblers
- ▶ AdS BH interior: entanglement, bulk reconstruction & (no) firewalls

Status in flat space: we know a tiny bit

In 2+1: HEE for global flat space and flat space cosmologies and Renyi/entanglement entropy for Carroll CFT $_2$

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ► Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ightharpoonup information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound
- AdS BHs are fast scramblers
- AdS BH interior: entanglement, bulk reconstruction & (no) firewalls
- AdS BHs suggest ER = EPR

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ightharpoonup Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ightharpoonup information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound
- AdS BHs are fast scramblers
- AdS BH interior: entanglement, bulk reconstruction & (no) firewalls
- ▶ AdS BHs suggest ER = EPR
- Page curve from quantum extremal surfaces (island proposal)

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ► Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- ightharpoonup information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound
- AdS BHs are fast scramblers
- AdS BH interior: entanglement, bulk reconstruction & (no) firewalls
- ► AdS BHs suggest ER = EPR
- Page curve from quantum extremal surfaces (island proposal)
- AdS BH holographic complexity = computational difficulty in CFT

Copy-and-paste AdS list:

- eternal BH in AdS = thermal equilibrium in CFT
- AdS BH formation = thermalization
- ightharpoonup Hawking-Page phase transition = (de)confinement phase transition
- AdS BH perturbations = relaxation process in dual plasma
- information not lost since dual CFT unitary
- information lost in strict large N limit
- AdS BH microstate counting from Cardyology
- AdS BHs saturate chaos bound
- AdS BHs are fast scramblers
- AdS BH interior: entanglement, bulk reconstruction & (no) firewalls
- AdS BHs suggest ER = EPR
- Page curve from quantum extremal surfaces (island proposal)
- AdS BH holographic complexity = computational difficulty in CFT
- ► Summary: there is a lot we do not know. Let us find out!

