Tensor products and R-matrices for quantum toroidal algebras

Duncan Laurie

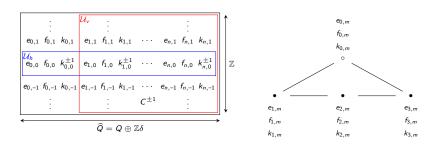
University of Edinburgh

Further details: arXiv:2503.08839

Quantum toroidal algebras $U_q(\mathfrak{g}_{tor})$

Definition: the quantum affinizations of quantum affine algebras

Construction: index Drinfeld's loop-style realization for $U_q(\hat{\mathfrak{g}})$ over affine Dynkin diagram



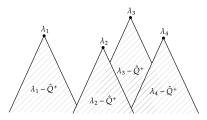
Topological coproduct: $\Delta_u: U_q(\mathfrak{g}_{\mathrm{tor}}) \to U_q(\mathfrak{g}_{\mathrm{tor}}) \mathbin{\widehat{\otimes}} U_q(\mathfrak{g}_{\mathrm{tor}})$, eg.

$$\Delta_{\text{u}}(e_{i,0}) \, = \, e_{i,0} \otimes 1 \, + \, \sum_{\ell \geq 0} (C^{-\ell} k_{i,\ell} \otimes e_{i,-\ell}) \, \text{u}^{\ell}$$

The module category $\widehat{\mathcal{O}}$

Definition: category $\widehat{\mathcal{O}}$ of $U_q(\mathfrak{g}_{tor})$ -modules whose restrictions to \mathcal{U}_h lie inside its category \mathcal{O} , ie.

- 1. all $e_{i,0}$ and $f_{i,0}$ act locally nilpotently
- 2. decompose as direct sum of finite-dimensional weight spaces w.r.t $\langle k_{0,0}^{\pm 1}, \dots, k_{n,0}^{\pm 1} \rangle$
- 3. weights lie inside finite union of cones



Motto: \cdot principal category $\widehat{\mathcal{O}}$ of integrable $U_q(\mathfrak{g}_{tor})$ representations

· toroidal analogue of finite-dimensional modules for quantum affine algebras

Problem: $\Delta_u \xrightarrow[]{\mathsf{nope!}} \otimes \mathsf{on} \ \widehat{\mathcal{O}}$ ©

Problem

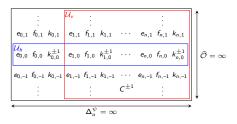
Motto: both Δ_u and repns in $\widehat{\mathcal{O}}$ are 'vertically infinite'

$$\begin{bmatrix} \vdots & & & & & \vdots \\ e_{0,1} & f_{0,1} & k_{0,1} & e_{1,1} & f_{1,1} & k_{1,1} & \cdots & e_{n,1} & f_{n,1} & k_{n,1} \\ \hline \mathcal{U}_h & & & & & \vdots \\ e_{0,0} & f_{0,0} & k_{0,0}^{\pm 1} & e_{1,0} & f_{1,0} & k_{1,0}^{\pm 1} & \cdots & e_{n,0} & f_{n,0} & k_{n,0}^{\pm 1} \\ \hline e_{0,-1} & f_{0,-1} & k_{0,-1} & e_{1,-1} & f_{1,-1} & k_{1,-1} & \cdots & e_{n,-1} & f_{n,-1} & k_{n,-1} \\ \hline & \vdots & & & & \vdots & & \vdots \\ \hline \end{bmatrix} \quad \Delta_u = \infty, \ \widehat{\mathcal{O}} = \infty$$

Example:
$$\Delta_u(e_{i,0}) = e_{i,0} \otimes 1 + \sum_{\ell > 0} (C^{-\ell} k_{i,\ell} \otimes e_{i,-\ell}) u^\ell$$

- · for $v \in V \in \widehat{\mathcal{O}}$, common that $k_{i,m} \cdot v \neq 0$ and $e_{i,m} \cdot v \neq 0$ for all $m \in \mathbb{Z}$
- $\therefore \ e_{i,0} \cdot (v \otimes w) = (e_{i,0} \cdot v) \otimes w + \sum_{\ell \geq 0} \underbrace{(k_{i,\ell} \cdot v)}_{\neq 0} \otimes \underbrace{(e_{i,-\ell} \cdot w)}_{\neq 0} u^{\ell} = ???$

Solution



Game plan [L24a,L24b,L25]¹:

- 1. (extended) double affine braid group action $\ddot{\mathcal{B}} \curvearrowright U_q(\mathfrak{g}_{\mathrm{tor}})$
- 2. duality involution $\mathfrak t$ of $\ddot{\mathcal B}$ pass across action anti-involution ψ of $U_q(\mathfrak g_{\mathrm{tor}})$ swapping $\mathcal U_h \leftrightarrow \mathcal U_{\mathsf V}$
- 3. horizontally infinite topological coproduct $\Delta_u^{\psi} = (\psi \otimes \psi) \circ \Delta_u \circ \psi$

Duncan Laurie

¹Building on works by Miki for $U_q(\mathfrak{sl}_{n+1,\text{tor}})$

 $^{^2\}psi \implies \widetilde{\mathit{GL}_2(\mathbb{Z})} \ltimes \ddot{\mathcal{B}} \curvearrowright \mathit{U}_q(\mathfrak{g}_{ ext{tor}})$ in all types, containing generalisation of celebrated Miki automorphism

Tensor product

Resembles Drinfeld–Jimbo coproduct and tensor product on affine level $^3\ \dots$

- $V \otimes W \cong V \otimes_{DJ} W$ as representations of $\mathcal{U}_{\mathbf{v}}$
- $\cdot \otimes$ of irreducibles is generically irreducible w.r.t. spectral parameter (cf. [Chari-Pressley])

Various nice properties ...

- · compatible with Drinfeld polys that classify irreducibles: $\mathcal{P}_i(V \otimes W) = \mathcal{P}_i(V) \cdot \mathcal{P}_i(W)$
- · compatible with q-characters⁴: $\chi_q(V \otimes W) = \chi_q(V) \cdot \chi_q(W)$ upgrades $\chi_q : \mathcal{K}(\widehat{\mathcal{O}}) \hookrightarrow \mathcal{Y}$ to ring homomorphism

Duncan Laurie

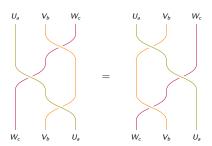
³compare: \otimes for $Y_h(\hat{\mathfrak{g}})$ due to [Guay-Nakajima-Wendlandt '18], though constructed rather differently!

 $^{^4}$: my tensor product \otimes and 'orthogonal' fusion product * [Hernandez '07] become equal on level of $K(\widehat{\mathcal{O}})$

Braiding by *R*-matrices

Theorem [L25]⁵: There exist meromorphic $\mathcal{R}(x): V \otimes W \to W \otimes V$ such that

 $U_q(\mathfrak{g}_{tor})$ -module homomorphism except at poles; isomorphism generically; YBE satisfied which equip $\widehat{\mathcal{O}}$ with a meromorphic braiding.



 $^{^{5}}V$, W are $\bigoplus \bigotimes$ irreducibles for now, but will extend