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Introduction
Light-cone formulation
@ Light-cone coordinates in (d + 1) dimensions

0 d+1 0 _ yd+1 )
X - 2T ii=1,2,...,d-1)
V2 V2

@ Formulating QFTs using light-cone time x [Dirac '49]

Why light-cone?
@ Easier to solve constraints and eliminate redundant d.o.f. but with caution!
E.g. Light-cone gauge: A_ = 0 — A} = f(A’) and Maxwell Lagrangian £;[A']
Subtleties: Non-locality in x— direction, zero modes of A, , etc.

@ Non-relativistic or Galilean aspects [Weinberg ‘66; Susskind'68]

. L PPt =P P_ — PP =0
Light-cone Physics «+— non-relativistic features )
P'P;
— 3D Galilei subgroup within 4D LC Poincaré > Hamiltonian Py = =~

Many successes: QCD computations, String quantization, Scattering amplitudes, Self-dual
actions, Higher spin theories...
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@ Ultrarelativistic limit (¢ — 0) of d-dim Poincaré theories

[Levy-Leblond, Gomis, Hartong, Obers, Kleinschmidt, Duval, Gibbons, Horvathy, .. .]

Carroll Hamiltonian actions: necessary and sufficient conditions
[Henneaux, Salgado-Rebolledo, 2021]

Electric and Magnetic Carroll sectors
Electric: Hg involve 7 or velocities ¢
Magnetic: H, involve spatial gradients 9;¢

@ Intrinsically on d-dim Carroll manifolds using geometric objects: g,..., n*, etc.

[Bergshoeff, Ciambelli, Gomis, Hartong, Obers, Oling Vandoren, Petropoulous,, .. .]

@ Null reduction from (d + 1)-dim Bargmann spacetimes [Duval, Gibbons, Horvathy, Zhang, 2014]
G=du@dv+dvedu+tgid @dd, n=a,

— Galilean spacetime: Projection (KK reduction along n) [Julia-Nicolai '95]
— Carrollian spacetime: Embedding (restricting to constant v surface)
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Goal: Apply null reduction to LC field theories

and derive same Carrollian theories obtained from ¢ — 0 method

Outline

@ Light-cone Minkowski is Bargmannian
@ Carroll theories from relativistic light-cone actions

@ Some concluding remarks
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Poincaré in light-cone coordinates

Minkowski metric
dS? = S, dxMax” = —2axTax~ + dx’dx;
A flat Bargmann structure:
n:8+, nI’LG,uu:Oa
m=90_, m’G, =0,

Kinematical subgroups of LC Poincaré [sm, arXiv: 2406.10353] [Bagchi, Nachiketh, Soni (2024)]

by = {Ps, P—, P;, My, M_;} b_ = {Ps+, P—, P;, My, M, ;}
(L b, . c b_ g
P, | P | P P, | P| P
M || My M || M, My M| | M M,
xT Newtonian, x— Carrollian x~— Newtonian, x* Carrollian

@ Two copies of d-dim Carroll, Bargmann, Galilei:

+ —
(9+>b+7c+) <L> (g,,b,,cf)

@ g : Galilei subgroup with light-cone Poincaré [susskind '68]
@ Carroll subgroups ¢ : Stability group of light fronts at constant x*



Outline

@ Light-cone Minkowski is Bargmannian
@ Carroll theories from relativistic light-cone actions

@ Some concluding remarks

This talk

Consider x* (Carrollian) time and constant x~ hypersurface
Relevant subgroups: b— = {Py, P_, P;, My;, M;} and c— = {P, P;, My;, M}
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Canonical Hamiltonian H = wdy¢ — L = Ea,-¢a’¢ — No oy ormtermsin H

Light-cone Hamiltonian action for scalars

Sl m ] = /dx+dx*dd*1x {r016—H - Nz —0-9)}

(g = / dx—d?xdym Adyd, {m(x),6(¥)}ps =0(x" —y )60 (x —y)

If = eliminated, we go back to S[¢, q's] — reduced phase space

{6(x), 6(y)}oB ~ 0(x~ —y7)57 1 (x —y)
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Null reduction to d-dim Carroll theories

@ Smearing function to restrict to constant x— surface [Chen, Liu, Zheng, 2023]
(Evaluate S around x~ = x; + ¢, then take e — 0)

de(x —xy )

! Xy E<x’<x’+E
{e’ ° 2 ° T2 x P

0, otherwise
Assuming x~ behaviour of the fields (Rescaling in ¢ — 0)
¢|r:x0* = ¢m(xT, X), W‘r:xl; = pm(x™, x)

N
@ Carroll action: £
Ji:qo(d+1)8€[¢,ﬂ] = (d)SCarr[¢m77rm] o

@ Only magnetic Carroll scalars obtained

1 ]
(d)SCarr[¢m:pm] = /‘dXerqu{PmaJr(f)m - Ea/'@sma’d’m}
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@ Smearing function to restrict to constant x— surface [Chen, Liu, Zheng, 2023]
(Evaluate S around x~ = x; + ¢, then take e — 0)
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0, otherwise
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@ Carroll action: 4

Ji:qo(d+1)8€[¢,ﬂ] = (d)SCarr[¢m77rm]

@ Only magnetic Carroll scalars obtained

1 ]
(d)SCarr[¢m:pm] = /‘dXerqu{PmaJr(f)m - Ea/'@sma’d’m}

@ No way to get electric Carroll sector for flat spacetimes — no = terms in H

Similar story for Galilean theories from null reduction
[Julia, Nicolai '95] [Bergshoeff, Figueroa O’Farrrill, Gomis]

How to fix this?



Resolution [sm, Arxiv: 2507.03081]

@ Deform L[4, ¢] to break Poincaré invariance by hand
Pick a null vector: n = 8, = Relevant subgroup b = {Py, P_, P;, M, ;, M}

. 1 1 .
LB, 6, 6] = Sa(0:0) + 0460-6 — 5060’6
@ Going to a general Bargmann spacetime
0o -1 0 o -1 0
n%=(-1 0 o0 — Guw -1 —a o0
0 0 g 0 0 g

Now, only n* lies in the kernel of G
@ Change of coordinates to Bargmann LC coordinates (x.t, x5 , x,)
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@ Deform L[4, ¢] to break Poincaré invariance by hand
Pick a null vector: n = 8, = Relevant subgroup b = {Py, P_, P;, M, ;, M}

. 1 1 .
LB, 6, 6] = Sa(0:0) + 0460-6 — 5060’6
@ Going to a general Bargmann spacetime
0o -1 0 0o -
ne,=1-1 0 0] — Gul|-1 -a
0 0 g 0 0 g

Now, only n* lies in the kernel of G
@ Change of coordinates to Bargmann LC coordinates (x.t, x5 , x,)

o o

«

X = xT+-x",
2

Xy = x7,

x, = x',

Already known in LC quantization literature!!!
“Near light-front coordinates” [Lenz-Thies (1991)]



Resolution [sm, Arxiv: 2507.03081]

@ Go to the Hamiltonian formulation

1 1 i
£ = Sa(040) + 0,606 — 50160'

1 1.
T=adip+0-¢, M= 5 (7~ O_¢)2 + 501999 — NoSCCs
o
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Resolution [sm, Arxiv: 2507.03081]

@ Go to the Hamiltonian formulation

1 1 i
£ = Sa(040) + 0,606 — 50160'

1 1.
T=adip+0-¢, M= 5 (7~ O_¢)2 + 501999 — NoSCCs
o

SBarg _ /dx+dx*dd*1x [roy0—HET), Baw = /dx*ddqxde Adys

@ Two possibilities that preserve canonical structure

Magnetic Carroll sector Electric Carroll sector
= ¢my, T=0_¢ = Pm, a— ale ¢ = cdo, ™— Pofe, a— ae?
_ 1 i 1
Sy = /dXerd 'x (Pm5+¢m - 56i¢m61¢m> s& = /dx*dd_1x <pm8+¢>m - z—pﬁ)
{07
EOM: 0y¢m =0, 0:pn=0'0ipm EOM: adym =Pe, Oppm=0
— Momenta not related to velocities ) — Momenta related to velocities

W




Deformation essential for electric Carroll sector

" Lorentzian light-cone action
(d+1)sLor[¢,ﬂ., /\]

l

Deformed Bargmann action
d+1)8Ba"rg[¢ , np

b — P, w—)pe/(;/ \ ¢ — ™", ™—p™

‘Electric Carroll Sector Magnetic Carroll Sector

@ SElm [¢21 pe] J | () Smaed [¢m; pm]




Proof of “Carroll-ness”

Carroll hypersurface deformation:
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Proof of “Carroll-ness”

Carroll hypersurface deformation:

Glet, ¢ = / dix (EPHO+EPF), ¢ =bx+at, d=uwid+d

@ Carroll commutation relations hold
(1o, HOW)] = 0, [HOM), PEW)] = -y [PPXO, PE)] = .-
(for both electric or magnetic cases)

@ Carroll transformations
S 10 = {6, GIET, €}, 6¢r p® = {p°, GlET, €}
render the Carrollian actions, Sy, and Sg, invariant

Carroll Hamiltonian actions: necessary and sufficient conditions
[Henneaux, Salgado-Rebolledo]

@ Additionally, under Carroll boosts b/,

magnetic: dpdbm =0, Jdppm # 0.
electric: dppe #0, dppe =0.



Same theories, different means

Starting point: Two very different Hamiltonian actions for Lorentzian FTs
— Constraints, IVP, Phase space, etc.

’ Lorentzian LC theories
l « d+1

dimensions

i Deformed Bargmann theories

Null reduction

¢ — 0 limit .
Lorentziantheories | — . | Carroll theories d dimensions

@ Equivalence of Carroll theories obtained from two different methods
@ Works for EM, Yang-Mills, p-form fields, etc. [SM, Arxiv: 2507.03081]



Light-cone gauge-fixing

Lorentzian light-cone action
(d+1)$La'r [A“, ,";L’ /\i]

Deformation to Bargmann / \\_ =0

General Bargmann action Gauge-fixed Bargmann action
@) §Barafyn 4, i) (@) sBargfge, A0 A 7]
Gauge constraint G = 9_n~ + Ok Gauge constraint Gy = O

Null reduction to Carroll

Electric or Magnetic Carroll action
A =0 (@D SCarr[AC, A9, ph)]
Gauge constraint Goar, = Okpl

Key observations:

@ Does not matter when LC gauge is implemented

9 Af): Zero mode as Largange multiplier for zero-mode gauge constraint Gy (LGTs)




General p-form gauge fields

@ Lorentzian action for p-form field on Mink9+"
1

A= —AuupO"T A Ndx"P . F = dA, S'C:/ F?
: M

@ Deformed Bargmann action

Barg __ 2 H1gM1 | ptpt1Vptt
S ,/MF +a/Mn n1. ntpH1Vps FM1__.HP+1FV1,..VP+1

@ Null reduction to Carroll:

Restrict to x~ = x° + ¢, then take ¢ — 0

Set ‘minus’ component to zero: F_ ., ..., =0 Light-cone gauge

SCarr — lim SBarg — / F2
e—0 c

Magnetic Carroll sector Electric Carroll sector
Fug - nppr = Figipyq Fry gy — Foiyip
Scalars: F, — Fi = 0i¢ Scalars: F, — Fy =0,¢

EM: F., — Fj ~ ejBx EM: Fuv — Fyi~ B
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Summary and Outlook

E Lorentzian LC theories

l o d+1)

dimensions

Deformed Bargmann theories ‘

Null reduction

c— 0 limit .
Lorentzian theories Carroll theories d dimensions

@ To-do list: Fermions [WIP], Curved geometries, Gravity ...
(Double-null foliation [d’Inverno-Smallwood '80])
@ For Lorentzian QFTs: hard and cumbersome but possible
Equal-time Quantization = Light-front Quantization

(time t or x°)

Lessons for Quantum Carroll theories?
Do quantum properties derived from the two methods agree with each other?
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Summary and Outlook

@ Discrete LC quantization (DLCQ) and other techniques
— Vacuum structure
— Explicit and Spontaneous symmetry breaking
— IR divergences, etc.

Examples: Z, symmetry in ¢*, O(N) sigma model, chiral symmetry breaking, ...

Review on Light-front Quantization [M. Burkardt, hep-ph/9505259]

Summary, Conclusions and
Outlook

LF field theory is a very promising approach toward calculating correlation
functions along a light-like direction. Such correlation functions appear in
the theoretical analysis of a variety of hard scattering processes, such as
deep inelastic lepton-hadron scattering and asymptotic form factors. Prob-
ably the most intriguing and controversial property of LF Hamiltonians is

20



