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Introduction

IR divergences commonly arise in de Sitter in-in correlators, even at tree level.

For example, for 3- and 4-point functions of massless (∆ = 3) and conformally

coupled (∆ = 2) scalars, the degrees of divergence ε−n in dim. reg. are:

External ∆i 3-points

[222] 0

[322] 1

[332] 0

[333] 1

∆x

4-points

External ∆i Contact ∆x = 2 ∆x = 3

[22; 22] 0 0 2

[32; 22] 0 1 1

[33; 22] 1 1 2

[32; 32] 1 2 1

[33; 32] 0 1 1

[33; 33] 1 1 2
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Introduction

These divergences arise from integrating over the vertices at late times and

reflect the infinite volume of spacetime.

In the first part of this talk:

We show how to renormalise the Schwinger-Keldysh path integral for de Sitter

correlators by adding local counterterms at the future boundary of de Sitter.

I While familiar from AdS/CFT, this approach has not been applied to dS.

I As a first step, we restrict here to tree level. At loop level, both UV and

IR divergences arise, and their effects need to be carefully disentangled.

In AdS: [Bañados, Bianchi, Muñoz, Skenderis ’22]

I IR divergences in dS have also been intensively studied using a non-

perturbative ‘stochastic’ formalism pioneered by Starobinsky in the 80s.

For recent work, see, e.g., [Gorbenko & Senatore ’19]
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Introduction

Our renormalisation procedure is inspired by, but independent of holography.

In the second part of the talk, we draw a comparison:

I We show how the renormalisation of late-time fields in dS is analogous to

the renormalisation of sources in AdS/CFT.

I However, renormalisation in dS is simpler than in AdS. Unlike in AdS,

there are no conformal anomalies in dS.

I In both AdS and dS, the IR divergences of the bulk theory are local.

This nontrivial property is required for the existence of a holographic

duality with a local CFT.

Local IR divergences in the bulk should map to local UV divergences of

the dual CFT, providing new constraints on dS holography.
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Set-up

I We consider tree-level correlators of light scalar fields (d/2 < ∆i < d),

with polynomial interactions, on fixed (d+ 1)-dimensional de Sitter:

ds2 =
L2
dS

τ2
[−dτ2 + dx2]

I Instead of a late-time cut-off, we use dimensional regularisation:

d→ d+ 2ε, ∆i → ∆i + ε

where the masses m2
iL

2
dS = ∆i(d−∆i) with d the boundary dimension.

The late-time asymptotics as τ → 0− are then power-law:

ϕi(τ,x) = (−τ)d−∆iϕi(0)(x) + . . .+ (−τ)∆iϕi(∆i)(x) + . . .

I Massless and conformal scalars provide useful examples where all

time-integrals can be explicitly evaluated in terms of dilogs, etc.
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Correlators in dS

The most direct way to compute dS correlators is via the Schwinger-Keldysh

(or in-in) formalism. This features a closed-time path integral:

〈ϕ(0)(x1) . . . ϕ(0)(xn)〉dS =

∫
Dϕ+(τ,x)Dϕ−(τ,x)

( n∏
i=1

ϕ(0)(xi)
)

× exp
(
iS+[ϕ+]− iS−[ϕ−]

)
There are two distinct fields:

ϕ+(τ,x) lives on the ‘forwards’ and ϕ−(τ,x)

on the ‘backwards’ part of the contour.

Differ by iε prescription: τ → −∞(1∓ iε).

The path integral is restricted to configurations

where their late-time values agree:

lim
τ→0

(−τ)∆−dϕ±(τ,x) = ϕ(0)(x).

5 / 20



Correlators in dS

A diagrammatic formalism follows by introducing sources J± for ϕ±:

Z[J+, J−] =

∫
ϕ+(0,x)=ϕ−(0,x)∼ϕ(0)(x)

Dϕ+ Dϕ− exp
[
iS+[ϕ+]−iS−[ϕ−]+i

∫
dd+1x

√
−g(J+ϕ+−J−ϕ−)

]

I Vertices come in two types ±, according to whether located on the

forwards or backwards contour.

I Propagators come in different types according to the vertices they connect.

I Correlators are constructed by summing over diagrams containing all

possible assignment of vertex types.

Review: [Chen, Wang, Xianyu 1703.10166]
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Correlators in dS

e.g., for a 4-point exchange diagram

+ +

ϕ1(0) ϕ2(0) ϕ3(0)ϕ4(0)

G
[∆1]
+

G
[∆2]
+ G

[∆3]
+

G
[∆4]
+

G
[∆x]
++

+

− −

ϕ1(0) ϕ2(0) ϕ3(0)ϕ4(0)

G
[∆1]
−

G
[∆2]
− G

[∆3]
−

G
[∆4]
−

G
[∆x]
−−

+

+ −

ϕ1(0) ϕ2(0) ϕ3(0)ϕ4(0)

G
[∆1]
+

G
[∆2]
+ G

[∆3]
−

G
[∆4]
−

G
[∆x]
+−

+

− +

ϕ1(0) ϕ2(0) ϕ3(0)ϕ4(0)

G
[∆1]
−

G
[∆2]
− G

[∆3]
+

G
[∆4]
+

G
[∆x]
−+
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Renormalisation

To renormalise the Schwinger-Keldysh path integral

Z[J+, J−] =

∫
ϕ+(0,x)=ϕ−(0,x)∼ϕ(0)(x)

Dϕ+ Dϕ− exp
[
iS+[ϕ+]−iS−[ϕ−]+i

∫
dd+1x

√
−g(J+ϕ+−J−ϕ−)

]

it’s sufficient to add to the exponent a boundary counterterm of the form

iSct = i

∫
τ=0

ddx (J+ − J−)f(ϕ(0);µ, a; ε).

where f is a local function of the late-time field ϕ(0)(x) and its derivatives, as

well as the RG scale µ and constants a parametrising the scheme-dependence.

If multiple bulk fields are present, we add such a counterterm for every field,

i.e., (Jk+ − Jk−)fk({ϕl0};µ, ak; ε), where the fk depend on all late-time fields.
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Renormalisation

The local function fk tells us how the late-time fields are renormalised.

At late times, the Schwinger-Keldysh source terms reduce to∫
dd+1x

√
−g (Jk+ϕ

k
+ − Jk−ϕk−)→

∫
τ=0

ddx (Jk+ − Jk−)ϕk(0)

and combine with the counterterm to become∫
τ=0

ddx (Jk+ − Jk−)ϕkR(0)

where ϕkR(0) is the renormalised late-time bulk field:

ϕkR(0) = ϕk(0) + fk({ϕl(0)};µ, ak; ε).

The form of the fk is constrained by dimensional analysis:

fk must have dimension d−∆k to match bulk field ϕk(0).

Such counterterms exist precisely in the cases for which IR divergences arise.
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Renormalisation

In practice, the fk are polynomials in the late-time fields ϕl(0) and their

derivatives. For the n-pt function, we need to know this to degree (n− 1).

For example, in d = 3,

I a massless scalar (∆ = 3) corresponds to a field ϕ
[0]

(0) of dimension 0.

I a conformal scalar (∆ = 2) corresponds to a field ϕ
[1]

(0) of dimension 1.

The available counterterms are thus:

f [0] = a
[0]
1 (ϕ

[0]

(0))
2 + a

[0]
2 (ϕ

[0]

(0))
3 + . . . , f [1] = a

[1]
1 ϕ

[0]

(0)ϕ
[1]

(0) + a
[1]
2 (ϕ

[0]

(0))
2ϕ

[1]

(0) + . . .

The constants a
[i]
j are adjusted so that all infinities are cancelled, after which

we remove the regulator ε→ 0 to obtain the renormalised correlators.

These counterterms are sufficient to renormalise all 24 correlators of massless

and conformal scalars at up to 4-points.
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Example

For simplicity, let’s discuss just a massless scalar with regulated action

SdS = −
∫

d4+2εx
√
−g
[1

2
∂µϕ∂

µϕ+
1

2
ε(3 + ε)ϕ2 +

1

6
λ3ϕ

3 − 1

24
λ4ϕ

4
]
.

We add to the Schwinger-Keldysh exponent the boundary counterterms

iSct = i

∫
τ=0

d3+2εx (J+ − J−)
[1

2
λ3r[333]ϕ

2
(0) +

(1

2
λ2

3r[33;33x3] +
1

6
λ4r[3333]

)
ϕ3

(0)

]
where r[333], r[3333] and r[33;33x3] are constants to be fixed. At 3 points,

〈ϕ(0)(x1)ϕ(0)(x2)ϕ(0)(x3)〉ren

= lim
ε→0
〈:
[
ϕ(0)(x1) +

1

2
λ3r[333]ϕ

2
(0)(x1)

]
::
[
ϕ(0)(x2) +

1

2
λ3r[333]ϕ

2
(0)(x2)

]
:

× :
[
ϕ(0)(x3) +

1

2
λ3r[333]ϕ

2
(0)(x3)

]
:〉reg +O(λ2

3)

= lim
ε→0

[
〈ϕ(0)(x1)ϕ(0)(x2)ϕ(0)(x3)〉reg

+ λ3r[333]

(
〈ϕ(0)(x1)ϕ(0)(x2)〉reg〈ϕ(0)(x1)ϕ(0)(x3)〉reg + 2 perms)

]
+O(λ2

3).

Cancelling pole in reg 3pt fn: r[333] = 1
3
Γ(ε)µ−ε

[
1 + ε a

(1)

[333] + ε2a
(2)

[333] +O(ε3)
]
.
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Example

At 4 points,

〈ϕ(0)(x1)ϕ(0)(x2)ϕ(0)(x3)ϕ(0)(x4)〉ren

= lim
ε→0

{
〈ϕ(0)(x1)ϕ(0)(x2)ϕ(0)(x3)ϕ(0)(x4)〉reg

+ λ3r[333]〈ϕ(0)(x1)ϕ(0)(x2)〉reg〈ϕ(0)(x1)ϕ(0)(x3)ϕ(0)(x4)〉reg + [11 perms.]

+ λ2
3r

2
[333]〈ϕ(0)(x1)ϕ(0)(x2)〉reg〈ϕ(0)(x2)ϕ(0)(x3)〉reg〈ϕ(0)(x3)ϕ(0)(x4)〉reg + [11]

+ (3λ2
3r[33;33x3] + λ4r[3333])

×〈ϕ(0)(x1)ϕ(0)(x2)〉reg〈ϕ(0)(x1)ϕ(0)(x3)〉reg〈ϕ(0)(x1)ϕ(0)(x4)〉reg + [3]
}

+O(λ3
3).

The regulated 4-pt function (top line of RHS) receives contributions ∼ λ2
3ε
−2

from exchanges and ∼ λ4ε
−1 from contacts. Cancelling divergences fixes:

r[3333] = −1

3
Γ(2ε)µ−2ε

[
1 + ε a

(1)

[3333] +O(ε2)
]
,

r[33;33x3] =
1

18
Γ2(ε)µ−2ε

[
1 + ε

(
2a

(1)

[333] + 1
3

)
+ ε2a

(2)

[33;33x3] +O(ε3)
]
.

Scheme dep: a
(1)

[333] in 3pt fn; a
(1)

[3333] in 4pt contact; a
(1,2)

[333] and a
(2)

[33;33x3] in exch.
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Renormalisation in AdS

Let’s now compare this procedure with holographic renormalisation in AdS.

In AdS, for scalars of mass m2
i = ∆i(∆i − d)L−2

AdS such that d/2 < ∆i < d,

we have the near-boundary asymptotics

ϕi(z,x) = zd−∆iϕi(0)(x) + . . . + z∆iϕi(∆i)(x) + . . .

source operator Oi

The renormalisation of tree-level correlators requires two steps:

Ê We add local boundary counterterms to the regulated on-shell bulk action:

Son−shell[ϕ
i
(0); ε]→ Son−shell[ϕ

i
(0); ε] + Sct[ϕ

i
(0); ε]

From the dual CFT perspective, these counterterms involve only the CFT

sources and encode the contributions from conformal anomalies.

[de Haro, Solodukhin & Skenderis ’00]
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Renormalisation in AdS

Ë We renormalise the sources: schematically, up to 3-points, we have

ϕi(0) = ϕi(0)[φ
j
(0), ε] = φi(0) +

1

ε
2k1φj1(0)2

k2φj2(0) + . . .

(This is only possible where the dimension of the 2nd term matches the 1st,

but this is precisely the condition for short-distance singularities in the 3-pt fn.)

The renormalised correlators are now obtained by functionally differentiating

the renormalised on-shell action,

Sren[φi(0)] = lim
ε→0

[
Son−shell[ϕ

i
(0)[φ

j
(0), ε]; ε] + Sct[ϕ

i
(0)[φ

j
(0), ε]; ε]

]
,

with respect to these renormalised sources φi(0).
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Renormalisation in AdS

From the dual CFT perspective, we have the coupling

SCFT[ϕi(0),Oi] =

∫
ddxϕi(0)Oi.

The renormalisation of sources

ϕi(0) = ϕi(0)[φ
j
(0), ε] = φi(0) +

1

ε
2k1φj1(0)2

k2φj2(0) + . . .

amounts to adding counterterms that renormalise this coupling:

SctCFT[φi(0),Oi; ε] =
1

ε

∫
ddx2k1φj1(0)2

k2φj2(0)Oi

While all β-functions vanish at a critical point, their derivatives wrt sources in

general do not, and these counterterms encode this data.

[Bzowski, PM, Skenderis ’15]
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Renormalisation in AdS vs dS

Comparing the asymptotics,

AdS : ϕi(z,x) = zd−∆iϕi(0)(x) + . . . + z∆iϕi(∆i)(x) + . . .

CFT source operator Oi

dS : ϕi(τ,x) = (−τ)d−∆iϕi(0)(x) + . . .+ (−τ)∆iϕi(∆i)(x) + . . .

late-time field ∼ sources (J i+−J i−)

I The renormalisation of sources in AdS, ϕi(0) = φi(0) + f i({φj(0)}; ε)
is analogous to that of late-time fields in dS, ϕiR(0) = ϕi(0) + f i({ϕj(0)}; ε).

i.e., AdS counterterms f i({φj(0)}; ε)Oi vs. f i({ϕj(0)}; ε)(J
i
+ − J i−) in dS.

I However, in AdS we have the counterterms Sct[{ϕi(0)}; ε] generating

anomalies. These have no counterpart in dS.
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Renormalisation in AdS vs dS

The reason why can be seen from the Schwinger-Keldysh path integral:

Z[J+, J−] =

∫
ϕ+(0,x)=ϕ−(0,x)∼ϕ(0)(x)

Dϕ+ Dϕ− exp
[
iS+[ϕ+]−iS−[ϕ−]+i

∫
dd+1x

√
−g(J+ϕ+−J−ϕ−)

]

Adding boundary counterterms sends

S+[ϕ+]→ S+[ϕ+] + Sct[ϕ(0), J+], S−[ϕ−]→ S−[ϕ−] + Sct[ϕ(0), J−].

Counterterms of the anomaly type Sct[ϕ(0)] are independent of the sources J±.

They simply cancel between the forwards and backwards part of the contour,

since Z[J+, J−] depends only on the difference S+[ϕ+]− S−[ϕ−].

Thus, we can have anomalies in AdS but not in dS. For example, the 2-point

function in AdS can have logs, but that in dS is always a pure power law.

See also: [Raju et al, ’23]
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Lessons for dS/CFT

The existence of a holographic duality between dS and a local CFT requires:

ä The structure of local IR divergences in dS matches that of local UV

divergences in the dual CFT.

This is highly nontrivial since, for specific sets of dimensions {∆i, d}, CFT

correlators have UV divergences associated with anomalies for which there are

no corresponding IR divergences in dS.

I One possible resolution is to set up a holographic dictionary based on

analytic continuation from AdS to dS.
[Maldacena ’02], [PM & Skenderis ’09]

It turns out that anomaly contributions to AdS/CFT correlators are

automatically projected out as a result of their ultralocal structure.
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Lessons for dS/CFT

Other recent works have explored analytic continuations from dS to AdS

theories featuring fields of the shadow dimensions ∆̄i = d−∆i.

[Sleight & Taronna ’20], [di Pietro, Gorbenko & Komatsu ’21]

Here, however, cases arise where the dS correlators are IR divergent and require

renormalisation while the corresponding shadow CFT correlators are finite.

e.g., 3-point function of two conformal and one massless scalar in dS is

dsren[322] =
1

4q3
1q2q3

{
−q1 + (q2 + q3)

[
log

(
qt
µ

)
+ a[322] − 1

]}
whereas

〈O0O1O1〉CFT = c[011]
(q2 + q3)

q3
1q2q3

i.e., only the the scheme-dependent terms in the dS correlator are reproduced.
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Conclusions

IR divergences in de Sitter correlators can be removed by adding local

counterterms at future infinity to the Schwinger-Keldysh path integral.

I Only a single type of counterterm is needed for all tree-level correlators.

I The renormalisation of late-time fields in dS corresponds to the

renormalisation of sources in AdS/CFT, but anomalies are absent.

I Explicit results available for all renormalised correlators of massless and

conformal scalars up to 4-points.

I Open directions: loops, heavy fields, bootstrapping renormalised de Sitter

correlators from the inhomogeneous conformal Ward identities they obey.
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