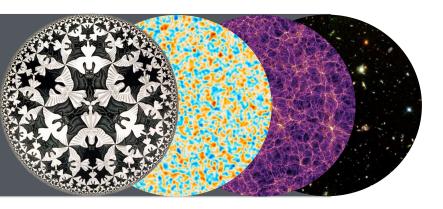
The renormalisation of IR divergences in de Sitter



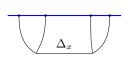
Paul McFadden (Durham) ICMS, Edinburgh 2025

Introduction

IR divergences commonly arise in de Sitter in-in correlators, even at tree level.

For example, for 3- and 4-point functions of massless ($\Delta=3$) and conformally coupled ($\Delta=2$) scalars, the degrees of divergence ϵ^{-n} in dim. reg. are:

of Δ_i 3-points	
0	
1	
0	
1	



	4-points		
External Δ_i	Contact	$\Delta_x = 2$	$\Delta_x = 3$
[22; 22]	0	0	2
[32; 22]	0	1	1
[33; 22]	1	1	2
[32; 32]	1	2	1
[33; 32]	0	1	1
[33; 33]	1	1	2

Introduction

These divergences arise from integrating over the vertices at late times and reflect the infinite volume of spacetime.

In the first part of this talk:

We show how to renormalise the Schwinger-Keldysh path integral for de Sitter correlators by adding local counterterms at the future boundary of de Sitter.

- ▶ While familiar from AdS/CFT, this approach has not been applied to dS.
- ► As a first step, we restrict here to tree level. At loop level, both UV and IR divergences arise, and their effects need to be carefully disentangled.

In AdS: [Bañados, Bianchi, Muñoz, Skenderis '22]

► IR divergences in dS have also been intensively studied using a non-perturbative 'stochastic' formalism pioneered by Starobinsky in the 80s.

For recent work, see, e.g., [Gorbenko & Senatore '19]

Introduction

Our renormalisation procedure is inspired by, but *independent* of holography. In the second part of the talk, we draw a comparison:

- ▶ We show how the renormalisation of late-time fields in dS is analogous to the renormalisation of sources in AdS/CFT.
- However, renormalisation in dS is simpler than in AdS. Unlike in AdS, there are no conformal anomalies in dS.
- In both AdS and dS, the IR divergences of the bulk theory are local. This nontrivial property is *required* for the existence of a holographic duality with a local CFT.
 - Local IR divergences in the bulk should map to local UV divergences of the dual CFT, providing new constraints on dS holography.

References

Work with Adam Bzowski and Kostas Skenderis:

- ➤ Renormalisation of IR divergences & holography in dS [JHEP 05 (2024) 053]
- ➤ A handbook of holographic 4-point functions [JHEP 12 (2022) 039]

Complete results for all 48 renormalised correlators of massless and conformal scalars, at up to 4-points, in both AdS and dS.

See also: Bzowski, Handbook of derivative AdS amplitudes [JHEP 04 (2024) 082] |

Other recent works: [Benincasa & Vazão '24], [Wang, Pimentel & Achúcarro '22], ...

Set-up

We consider tree-level correlators of light scalar fields $(d/2 < \Delta_i < d)$, with polynomial interactions, on fixed (d+1)-dimensional de Sitter:

$$\mathrm{d}s^2 = \frac{L_{dS}^2}{\tau^2} [-\mathrm{d}\tau^2 + \mathrm{d}\boldsymbol{x}^2]$$

Instead of a late-time cut-off, we use dimensional regularisation:

$$d \to d + 2\epsilon, \qquad \Delta_i \to \Delta_i + \epsilon$$

where the masses $m_i^2 L_{dS}^2 = \Delta_i (d - \Delta_i)$ with d the boundary dimension.

The late-time asymptotics as $\tau \to 0^-$ are then power-law:

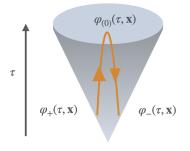
$$\varphi^i(\tau, \boldsymbol{x}) = (-\tau)^{d-\Delta_i} \varphi^i_{(0)}(\boldsymbol{x}) + \ldots + (-\tau)^{\Delta_i} \varphi^i_{(\Delta_i)}(\boldsymbol{x}) + \ldots$$

Massless and conformal scalars provide useful examples where all time-integrals can be explicitly evaluated in terms of dilogs, etc.

Correlators in dS

The most *direct* way to compute dS correlators is via the Schwinger-Keldysh (or in-in) formalism. This features a closed-time path integral:

$$\langle \varphi_{(0)}(\boldsymbol{x}_1) \dots \varphi_{(0)}(\boldsymbol{x}_n) \rangle_{dS} = \int \mathcal{D}\varphi_+(\tau, \boldsymbol{x}) \mathcal{D}\varphi_-(\tau, \boldsymbol{x}) \left(\prod_{i=1}^n \varphi_{(0)}(\boldsymbol{x}_i) \right) \times \exp \left(iS_+[\varphi_+] - iS_-[\varphi_-] \right)$$



There are two distinct fields:

 $\varphi_+(\tau, x)$ lives on the 'forwards' and $\varphi_-(\tau, x)$ on the 'backwards' part of the contour.

Differ by $i\epsilon$ prescription: $\tau \to -\infty(1 \mp i\epsilon)$.

The path integral is restricted to configurations where their late-time values agree:

$$\lim_{\tau \to 0} (-\tau)^{\Delta - d} \varphi_{\pm}(\tau, \boldsymbol{x}) = \varphi_{(0)}(\boldsymbol{x}).$$

Correlators in dS

A diagrammatic formalism follows by introducing sources J_{\pm} for φ_{\pm} :

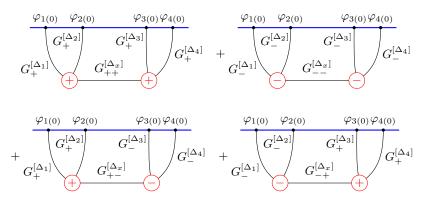
$$Z[J_+, J_-] = \int_{\varphi_+(0, \boldsymbol{x}) = \varphi_-(0, \boldsymbol{x}) \sim \varphi_{(0)}(\boldsymbol{x})} \mathcal{D}\varphi_+ \exp\left[iS_+[\varphi_+] - iS_-[\varphi_-] + i\int \mathrm{d}^{d+1}x\sqrt{-g}(J_+\varphi_+ - J_-\varphi_-)\right]$$

- Vertices come in two types ±, according to whether located on the forwards or backwards contour.
- Propagators come in different types according to the vertices they connect.
- Correlators are constructed by summing over diagrams containing all possible assignment of vertex types.

Review: [Chen, Wang, Xianyu 1703.10166]

Correlators in dS

e.g., for a 4-point exchange diagram



Renormalisation

To renormalise the Schwinger-Keldysh path integral

$$Z[J_+, J_-] = \int_{\varphi_+(0, \boldsymbol{x}) = \varphi_-(0, \boldsymbol{x}) \sim \varphi_{(0)}(\boldsymbol{x})} \mathcal{D}\varphi_- \exp\left[iS_+[\varphi_+] - iS_-[\varphi_-] + i\int d^{d+1}x\sqrt{-g}(J_+\varphi_+ - J_-\varphi_-)\right]$$

it's sufficient to add to the exponent a boundary counterterm of the form

$$iS_{\rm ct} = i \int_{\tau=0} \mathrm{d}^d \boldsymbol{x} (J_+ - J_-) f(\varphi_{(0)}; \mu, \mathfrak{a}; \epsilon).$$

where f is a local function of the late-time field $\varphi_{(0)}(x)$ and its derivatives, as well as the RG scale μ and constants $\mathfrak a$ parametrising the scheme-dependence.

If multiple bulk fields are present, we add such a counterterm for every field, i.e., $(J_+^k-J_-^k)f^k(\{\varphi_0^l\};\mu,\mathfrak{a}_k;\epsilon)$, where the f^k depend on all late-time fields.

Renormalisation

The local function f^k tells us how the late-time fields are renormalised.

At late times, the Schwinger-Keldysh source terms reduce to

$$\int \mathrm{d}^{d+1}x\sqrt{-g}\left(J_+^k\varphi_+^k-J_-^k\varphi_-^k\right) \to \int_{\tau=0} \mathrm{d}^d\boldsymbol{x}\left(J_+^k-J_-^k\right)\varphi_{(0)}^k$$

and combine with the counterterm to become

$$\int_{\tau=0} d^d \boldsymbol{x} (J_+^k - J_-^k) \varphi_{R(0)}^k$$

where $\varphi_{R(0)}^k$ is the *renormalised* late-time bulk field:

$$\varphi_{R(0)}^k = \varphi_{(0)}^k + f^k(\{\varphi_{(0)}^l\}; \mu, \mathfrak{a}_k; \epsilon).$$

The form of the f^k is constrained by dimensional analysis:

$$f^k$$
 must have dimension $d - \Delta_k$ to match bulk field $\varphi_{(0)}^k$.

Such counterterms exist *precisely* in the cases for which IR divergences arise.

Renormalisation

In practice, the f^k are polynomials in the late-time fields $\varphi_{(0)}^l$ and their derivatives. For the n-pt function, we need to know this to degree (n-1).

For example, in d = 3,

- \blacktriangleright a massless scalar ($\Delta=3$) corresponds to a field $\varphi_{(0)}^{[0]}$ of dimension 0.
- lacktriangle a conformal scalar $(\Delta=2)$ corresponds to a field $arphi^{[1]}_{(0)}$ of dimension 1.

The available counterterms are thus:

$$f^{[0]} = a_1^{[0]} (\varphi_{(0)}^{[0]})^2 + a_2^{[0]} (\varphi_{(0)}^{[0]})^3 + \dots, f^{[1]} = a_1^{[1]} \varphi_{(0)}^{[0]} \varphi_{(0)}^{[1]} + a_2^{[1]} (\varphi_{(0)}^{[0]})^2 \varphi_{(0)}^{[1]} + \dots$$

The constants $a_j^{[i]}$ are adjusted so that all infinities are cancelled, after which we remove the regulator $\epsilon \to 0$ to obtain the renormalised correlators.

These counterterms are sufficient to renormalise all 24 correlators of massless and conformal scalars at up to 4-points.

Example

For simplicity, let's discuss just a massless scalar with regulated action

$$S_{dS} = -\int \mathrm{d}^{4+2\epsilon} x \sqrt{-g} \Big[\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + \frac{1}{2} \epsilon (3+\epsilon) \varphi^2 + \frac{1}{6} \lambda_3 \varphi^3 - \frac{1}{24} \lambda_4 \varphi^4 \Big].$$

We add to the Schwinger-Keldysh exponent the boundary counterterms

$$iS_{\mathsf{ct}} = i \int_{\tau=0} \mathrm{d}^{3+2\epsilon} \pmb{x} \, (J_+ - J_-) \Big[\frac{1}{2} \lambda_3 \mathfrak{r}_{[333]} \varphi_{(0)}^2 + \Big(\frac{1}{2} \lambda_3^2 \mathfrak{r}_{[33;33x3]} + \frac{1}{6} \lambda_4 \mathfrak{r}_{[3333]} \Big) \varphi_{(0)}^3 \Big]$$

where $\mathfrak{r}_{[333]}$, $\mathfrak{r}_{[3333]}$ and $\mathfrak{r}_{[33;33x3]}$ are constants to be fixed. At 3 points,

$$\begin{split} \langle \varphi_{(0)}(\boldsymbol{x}_1) \varphi_{(0)}(\boldsymbol{x}_2) \varphi_{(0)}(\boldsymbol{x}_3) \rangle_{\text{ren}} \\ &= \lim_{\epsilon \to 0} \langle : \left[\varphi_{(0)}(\boldsymbol{x}_1) + \frac{1}{2} \lambda_3 \mathfrak{r}_{[333]} \varphi_{(0)}^2(\boldsymbol{x}_1) \right] :: \left[\varphi_{(0)}(\boldsymbol{x}_2) + \frac{1}{2} \lambda_3 \mathfrak{r}_{[333]} \varphi_{(0)}^2(\boldsymbol{x}_2) \right] : \\ &\qquad \qquad \times : \left[\varphi_{(0)}(\boldsymbol{x}_3) + \frac{1}{2} \lambda_3 \mathfrak{r}_{[333]} \varphi_{(0)}^2(\boldsymbol{x}_3) \right] : \rangle_{\text{reg}} + O(\lambda_3^2) \\ &= \lim_{\epsilon \to 0} \left[\langle \varphi_{(0)}(\boldsymbol{x}_1) \varphi_{(0)}(\boldsymbol{x}_2) \varphi_{(0)}(\boldsymbol{x}_3) \rangle_{\text{reg}} \\ &\qquad \qquad + \lambda_3 \mathfrak{r}_{[333]} \left(\langle \varphi_{(0)}(\boldsymbol{x}_1) \varphi_{(0)}(\boldsymbol{x}_2) \rangle_{\text{reg}} \langle \varphi_{(0)}(\boldsymbol{x}_1) \varphi_{(0)}(\boldsymbol{x}_3) \rangle_{\text{reg}} + 2 \text{ perms} \right) \right] + O(\lambda_3^2). \end{split}$$

Cancelling pole in reg 3pt fn: $\mathfrak{r}_{[333]} = \tfrac{1}{3}\Gamma(\epsilon)\mu^{-\epsilon} \big[1 + \epsilon\,\mathfrak{a}_{[333]}^{(1)} + \epsilon^2\mathfrak{a}_{[333]}^{(2)} + O(\epsilon^3)\big].$

Example

At 4 points,

$$\begin{split} &\langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_2)\varphi_{(0)}(\boldsymbol{x}_3)\varphi_{(0)}(\boldsymbol{x}_4)\rangle_{\text{ren}} \\ &= \lim_{\epsilon \to 0} \big\{ \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_2)\varphi_{(0)}(\boldsymbol{x}_3)\varphi_{(0)}(\boldsymbol{x}_4)\rangle_{\text{reg}} \\ &+ \lambda_3 \mathfrak{t}_{[333]}^2 \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_2)\rangle_{\text{reg}} \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_3)\varphi_{(0)}(\boldsymbol{x}_4)\rangle_{\text{reg}} + [11 \, \text{perms.}] \\ &+ \lambda_3^2 \mathfrak{t}_{[333]}^2 \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_2)\rangle_{\text{reg}} \langle \varphi_{(0)}(\boldsymbol{x}_2)\varphi_{(0)}(\boldsymbol{x}_3)\rangle_{\text{reg}} \langle \varphi_{(0)}(\boldsymbol{x}_3)\varphi_{(0)}(\boldsymbol{x}_4)\rangle_{\text{reg}} + [11] \\ &+ (3\lambda_3^2 \mathfrak{t}_{[33;33x3]} + \lambda_4 \mathfrak{t}_{[3333]}) \\ &\times \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_2)\rangle_{\text{reg}} \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_3)\rangle_{\text{reg}} \langle \varphi_{(0)}(\boldsymbol{x}_1)\varphi_{(0)}(\boldsymbol{x}_4)\rangle_{\text{reg}} + [3] \big\} + O(\lambda_3^3). \end{split}$$

The regulated 4-pt function (top line of RHS) receives contributions $\sim \lambda_3^2 \epsilon^{-2}$ from exchanges and $\sim \lambda_4 \epsilon^{-1}$ from contacts. Cancelling divergences fixes:

$$\begin{split} \mathfrak{r}_{[3333]} &= -\frac{1}{3}\Gamma(2\epsilon)\mu^{-2\epsilon} \left[1 + \epsilon\,\mathfrak{a}_{[3333]}^{(1)} + O(\epsilon^2) \right], \\ \mathfrak{r}_{[33;33x3]} &= \frac{1}{18}\Gamma^2(\epsilon)\mu^{-2\epsilon} \left[1 + \epsilon\,\left(2\mathfrak{a}_{[333]}^{(1)} + \frac{1}{3} \right) + \epsilon^2\mathfrak{a}_{[33;33x3]}^{(2)} + O(\epsilon^3) \right]. \end{split}$$

Scheme dep: $\mathfrak{a}_{[333]}^{(1)}$ in 3pt fn; $\mathfrak{a}_{[3333]}^{(1)}$ in 4pt contact; $\mathfrak{a}_{[333]}^{(1,2)}$ and $\mathfrak{a}_{[33;33x3]}^{(2)}$ in exch.

Renormalisation in AdS

Let's now compare this procedure with holographic renormalisation in AdS.

In AdS, for scalars of mass $m_i^2 = \Delta_i (\Delta_i - d) L_{AdS}^{-2}$ such that $d/2 < \Delta_i < d$, we have the near-boundary asymptotics

$$arphi^i(z,m{x}) = z^{d-\Delta_i} arphi^i_{(0)}(m{x}) + \dots + z^{\Delta_i} arphi^i_{(\Delta_i)}(m{x}) + \dots$$
 source operator \mathcal{O}_i

The renormalisation of tree-level correlators requires two steps:

• We add local boundary counterterms to the regulated on-shell bulk action:

$$S_{\text{on-shell}}[\varphi_{(0)}^i;\epsilon] \to S_{\text{on-shell}}[\varphi_{(0)}^i;\epsilon] + S_{ct}[\varphi_{(0)}^i;\epsilon]$$

From the dual CFT perspective, these counterterms involve only the CFT sources and encode the contributions from conformal anomalies.

[de Haro, Solodukhin & Skenderis '00]

Renormalisation in AdS

2 We renormalise the sources: schematically, up to 3-points, we have

$$\varphi^i_{(0)} = \varphi^i_{(0)}[\phi^j_{(0)},\epsilon] = \phi^i_{(0)} + \frac{1}{\epsilon}\Box^{k_1}\phi^{j_1}_{(0)}\Box^{k_2}\phi^{j_2}_{(0)} + \dots$$

(This is only possible where the dimension of the 2nd term matches the 1st, but this is precisely the condition for short-distance singularities in the 3-pt fn.)

The renormalised correlators are now obtained by functionally differentiating the renormalised on-shell action,

$$S_{\text{ren}}[\phi_{(0)}^i] = \lim_{\epsilon \to 0} \Big[S_{\text{on-shell}}[\varphi_{(0)}^i[\phi_{(0)}^j, \epsilon]; \epsilon] + S_{ct}[\varphi_{(0)}^i[\phi_{(0)}^j, \epsilon]; \epsilon] \Big],$$

with respect to these *renormalised* sources $\phi^i_{(0)}$.

Renormalisation in AdS

From the dual CFT perspective, we have the coupling

$$S_{\mathrm{CFT}}[\varphi_{(0)}^i, \mathcal{O}_i] = \int \mathrm{d}^d \boldsymbol{x} \, \varphi_{(0)}^i \mathcal{O}_i.$$

The renormalisation of sources

$$\varphi_{(0)}^i = \varphi_{(0)}^i[\phi_{(0)}^j, \epsilon] = \phi_{(0)}^i + \frac{1}{\epsilon} \Box^{k_1} \phi_{(0)}^{j_1} \Box^{k_2} \phi_{(0)}^{j_2} + \dots$$

amounts to adding counterterms that renormalise this coupling:

$$S^{ct}_{\mathrm{CFT}}[\phi^i_{(0)}, \mathcal{O}_i; \epsilon] = \frac{1}{\epsilon} \int \mathrm{d}^d \boldsymbol{x} \, \Box^{k_1} \phi^{j_1}_{(0)} \Box^{k_2} \phi^{j_2}_{(0)} \mathcal{O}_i$$

While all β -functions vanish at a critical point, their derivatives wrt sources in general do not, and these counterterms encode this data.

[Bzowski, PM, Skenderis '15]

Renormalisation in AdS vs dS

Comparing the asymptotics,

$$\begin{array}{lll} \mathrm{AdS}: & \varphi^i(z, \boldsymbol{x}) = z^{d-\Delta_i} \varphi^i_{(0)}(\boldsymbol{x}) + \ldots & + z^{\Delta_i} \varphi^i_{(\Delta_i)}(\boldsymbol{x}) + \ldots \\ & \mathrm{CFT} \ \mathrm{source} & \mathrm{operator} \ \mathcal{O}_i \\ \\ \mathrm{dS}: & \varphi^i(\tau, \boldsymbol{x}) = (-\tau)^{d-\Delta_i} \varphi^i_{(0)}(\boldsymbol{x}) + \ldots + (-\tau)^{\Delta_i} \varphi^i_{(\Delta_i)}(\boldsymbol{x}) + \ldots \\ & \mathrm{late-time} \ \mathrm{field} & \sim \mathrm{sources} \ (J^i_+ - J^i_-) \end{array}$$

- The renormalisation of *sources* in AdS, $\varphi^i_{(0)} = \phi^i_{(0)} + f^i(\{\phi^j_{(0)}\};\epsilon)$ is analogous to that of *late-time fields* in dS, $\varphi^i_{R(0)} = \varphi^i_{(0)} + f^i(\{\varphi^j_{(0)}\};\epsilon).$ *i.e.*, AdS counterterms $f^i(\{\phi^j_{(0)}\};\epsilon)\mathcal{O}_i \text{ vs. } f^i(\{\varphi^j_{(0)}\};\epsilon)(J^i_+ J^i_-) \text{ in dS}.$
- ▶ However, in AdS we have the counterterms $S_{ct}[\{\varphi_{(0)}^i\};\epsilon]$ generating anomalies. These have no counterpart in dS.

Renormalisation in AdS vs dS

The reason why can be seen from the Schwinger-Keldysh path integral:

$$Z[J_+, J_-] = \int_{\varphi_+(0, \boldsymbol{x}) = \varphi_-(0, \boldsymbol{x}) \sim \varphi_0(0)(\boldsymbol{x})} \mathcal{D}\varphi_- \exp\left[iS_+[\varphi_+] - iS_-[\varphi_-] + i\int d^{d+1}x\sqrt{-g}(J_+\varphi_+ - J_-\varphi_-)\right]$$

Adding boundary counterterms sends

$$S_{+}[\varphi_{+}] \to S_{+}[\varphi_{+}] + S_{ct}[\varphi_{(0)}, J_{+}], \qquad S_{-}[\varphi_{-}] \to S_{-}[\varphi_{-}] + S_{ct}[\varphi_{(0)}, J_{-}].$$

Counterterms of the anomaly type $S_{ct}[\varphi_{(0)}]$ are independent of the sources J_{\pm} . They simply cancel between the forwards and backwards part of the contour, since $Z[J_+,J_-]$ depends only on the difference $S_+[\varphi_+]-S_-[\varphi_-]$.

Thus, we can have anomalies in AdS but not in dS. For example, the 2-point function in AdS can have logs, but that in dS is always a pure power law.

See also: [Raju et al, '23]

Lessons for dS/CFT

The existence of a holographic duality between dS and a local CFT requires:

➤ The structure of local IR divergences in dS matches that of local UV divergences in the dual CFT.

This is highly nontrivial since, for specific sets of dimensions $\{\Delta_i, d\}$, CFT correlators have UV divergences associated with anomalies for which there are no corresponding IR divergences in dS.

 One possible resolution is to set up a holographic dictionary based on analytic continuation from AdS to dS.

[Maldacena '02], [PM & Skenderis '09]

It turns out that anomaly contributions to AdS/CFT correlators are automatically projected out as a result of their ultralocal structure.

Lessons for dS/CFT

Other recent works have explored analytic continuations from dS to AdS theories featuring fields of the shadow dimensions $\bar{\Delta}_i = d - \Delta_i$.

[Sleight & Taronna '20], [di Pietro, Gorbenko & Komatsu '21]

Here, however, cases arise where the dS correlators are IR divergent and require renormalisation while the corresponding shadow CFT correlators are finite.

e.g., 3-point function of two conformal and one massless scalar in dS is

$$ds_{[322]}^{ren} = \frac{1}{4q_1^3 q_2 q_3} \left\{ -q_1 + (q_2 + q_3) \left[\log \left(\frac{q_t}{\mu} \right) + \mathfrak{a}_{[322]} - 1 \right] \right\}$$

whereas

$$\langle \mathcal{O}_0 \mathcal{O}_1 \mathcal{O}_1 \rangle_{CFT} = c_{[011]} \frac{(q_2 + q_3)}{q_1^3 q_2 q_3}$$

i.e., only the the scheme-dependent terms in the dS correlator are reproduced.

Conclusions

IR divergences in de Sitter correlators can be removed by adding local counterterms at future infinity to the Schwinger-Keldysh path integral.

- Only a single type of counterterm is needed for all tree-level correlators.
- ► The renormalisation of late-time fields in dS corresponds to the renormalisation of sources in AdS/CFT, but anomalies are absent.
- Explicit results available for all renormalised correlators of massless and conformal scalars up to 4-points.
- Open directions: loops, heavy fields, bootstrapping renormalised de Sitter correlators from the *inhomogeneous* conformal Ward identities they obey.