Coproduct of T-series for Yangians in type A

Jérôme Milot jerome.milot@univ-lille.fr

Université de Lille

November 19, 2025

Yangians

Drinfeld presentation

The Yangian Y of a finite-dimensional complex Lie algebra $\mathfrak g$ is a deformation of the enveloping algebra of the current algebra $\mathfrak g[u]$. It can be defined by generators $x_{i,n}^\pm, \xi_{i,n}$ and relations. The $\xi_{i,n}$ generate a commutative subalgebra, called Drinfeld-Cartan subalgebra.

Yangians

Drinfeld presentation

The Yangian Y of a finite-dimensional complex Lie algebra $\mathfrak g$ is a deformation of the enveloping algebra of the current algebra $\mathfrak g[u]$. It can be defined by generators $x_{i,n}^\pm, \xi_{i,n}$ and relations. The $\xi_{i,n}$ generate a commutative subalgebra, called Drinfeld-Cartan subalgebra.

One of the main open question for this presentation is the coproduct of these generators. For instance, in the case \mathfrak{sl}_2 , Molev gave the following formula for the generating series $\xi(z)$:

$$\Delta(\xi(z)) = (1 \otimes \xi(z)) \left(\sum_{k=0}^{\infty} (-1)^k (k+1) (x^-(z+1))^k \otimes (x^+(z+1))^k \right) (\xi(z) \otimes 1).$$

History

• First introduced by Frenkel-Hernandez (2015) for quantum affine algebras (to study quantum integrable systems);

History

- First introduced by Frenkel-Hernandez (2015) for quantum affine algebras (to study quantum integrable systems);
- Then adapted by Zhang (2024) for Yangians (to construct R-matrices for 1-dimensional representations).

History

- First introduced by Frenkel-Hernandez (2015) for quantum affine algebras (to study quantum integrable systems);
- Then adapted by Zhang (2024) for Yangians (to construct R-matrices for 1-dimensional representations).

Remark

Evaluations of T-series at certain representations of Yangians were studied by Gautam-Wendlandt (2021) and Hernandez-Zhang (2021).

Idea

The **T-series** $T_i(z)$ are defined as the unique solution of difference equations determined by $\xi_i(z)$.

Idea

The **T-series** $T_i(z)$ are defined as the unique solution of difference equations determined by $\xi_i(z)$. More concretly, T-series are invertible formal series with coefficients in the commutative Drinfeld-Cartan subalgebra.

Idea

The **T-series** $T_i(z)$ are defined as the unique solution of difference equations determined by $\xi_i(z)$. More concretly, T-series are invertible formal series with coefficients in the commutative Drinfeld-Cartan subalgebra.

Commuting relations for T-series

The series $T_i(z)$ commute with $x_j^\pm(z)$ for $j \neq i$ and we have the following relations for $1 \leqslant i \leqslant n$:

$$T_i(z)x_{i,n}^- T_i(z)^{-1} = x_{i,n+1}^- - zx_{i,n}^-$$
$$T_i(z)^{-1}x_{i,n}^+ T_i(z) = x_{i,n+1}^+ - zx_{i,n}^+.$$

Coproduct of T-series

The coproduct of the T-series can be factorized as follow:

$$\Delta(T_i(z)) = (1 \otimes T_i(z))\Theta_i(z)(T_i(z) \otimes 1)$$

where $\Theta_i(z)$ can be interpreted as an associator for some representations of shifted Yangians. Zhang (2024) proved $\Theta_i(z)$ is locally polynomial in z.

Coproduct of T-series

The coproduct of the T-series can be factorized as follow:

$$\Delta(T_i(z)) = (1 \otimes T_i(z))\Theta_i(z)(T_i(z) \otimes 1)$$

where $\Theta_i(z)$ can be interpreted as an associator for some representations of shifted Yangians. Zhang (2024) proved $\Theta_i(z)$ is locally polynomial in z.

Theorem (M.)

Let $\mathfrak g$ a Lie algebra of type A_n . Denote by $(E_{jk})_{1\leqslant j,k\leqslant n+1}$ the elementary matrices in $\mathfrak {sl}_{n+1}$. Then, for $1\leqslant i\leqslant n$:

$$\Theta_i(z) = \exp\left(\sum_{1 \leqslant j \leqslant i < k \leqslant n+1} E_{kj} \otimes E_{jk}\right).$$

Computation of the coproduct

Intertwining equations

The intertwining equations of $\Theta_i(z)$ encode the fact the series have to commute with the actions of the generators of Y. In fact, it suffices to satisfy the commutation with the generators $x_{j,0}^+$ to determine Θ_i . These equations are verified for all type of Lie algebra, but can be complicated to write.

In type A

Intertwining relations

In type A_n , we get a system of n equations for $\Theta_i(z)$.

For
$$j \neq i$$
: $\left[x_{j,0}^+ \otimes 1 + 1 \otimes x_{j,0}^+, \Theta_i(z)\right] = 0$.

In type A

Intertwining relations

In type A_n , we get a system of n equations for $\Theta_i(z)$.

For
$$j \neq i$$
: $\left[x_{j,0}^+ \otimes 1 + 1 \otimes x_{j,0}^+, \Theta_i(z)\right] = 0$.

The last equation is :

$$\left[x_{i,0}^+ \otimes 1 + 1 \otimes x_{i,1}^+ - z(1 \otimes x_{i,0}^+), \Theta_i(z) \right] = \Theta_i(z) \left(z h_{i,0} \otimes x_{i,0}^+ - \sum_{k=i+2}^{n+1} E_{k,i+1} \otimes E_{i,k} + \sum_{j=1}^{i-1} E_{i,j} \otimes E_{j,i+1} \right).$$

Applications '

Applications

 Construction of R-matrices for standard Yangians (following Zhang 2024).

Applications

Applications

- Construction of R-matrices for standard Yangians (following Zhang 2024).
- Explicit computation for certain quotients of Yangians, and consequences for their representation theories (in case sl₂ for now (M. 2025)).

Quantum affine algebras

• Intertwining properties do not make sens in the quantum affine case.

Quantum affine algebras

- Intertwining properties do not make sens in the quantum affine case.
- Yet, Θ_i can be computed by universal R-matrices, applied to particulars modules over the Borel subalgebra.

Quantum affine algebras

- Intertwining properties do not make sens in the quantum affine case.
- Yet, Θ_i can be computed by universal R-matrices, applied to particulars modules over the Borel subalgebra.
- We expect very similar formulas to Yangians in type A.

Quantum affine algebras

- Intertwining properties do not make sens in the quantum affine case.
- Yet, Θ_i can be computed by **universal R-matrices**, applied to particulars modules over the Borel subalgebra.
- We expect very similar formulas to Yangians in type A.

Shifted case

In fact, all these constructions in the original article are considered for shifted Yangians. Yet, our formula can be generalized by classical zigzag arguments.

References

Edward Frenkel and David Hernandez

Baxter's relations and spectra of quantum integrable models.

Duke Math. J., 164(12):2407-2460, 2015.

Sachin Gautam and Curtis Wendlandt.

Poles of finite-dimensional representations of Yangians. Sel. Math., New Ser., 29(1):68, 2023.

David Hernandez and Huafeng Zhang.

Shifted Yangians and polynomial R-matrices.

Publ. Res. Inst. Math. Sci., 60(1):1-69, 2024.

lérôme Milot

Compatibility between truncation and coproduct for quantum affine algebra and yangian of $\mathfrak{sl}_2(\mathbb{C})$. arXiv:2506.10544, 2025.

Huafeng Zhang.

Theta series for quantum loop algebras and Yangians.

Commun. Math. Phys., 405(10):68, 2024.