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Rigidity

One of the key ambitions of the string theory research
programme is to uncover quantum theory of gravity in our
universe. But how can we possibly hope to get there in the
absence of detailed input from experiment?
Chapter 1 of Polchinski’s 1998 book records a widely
expressed hope in the following words: “We are fortunate
that consistency turns out to be such a restrictive principle,
since the unification of gravity with the other interactions
takes place at such high energy, mP , that experimental
tests will be difficult and indirect.”
Polchinski was referring to the rigidity of string S matrix
computed perturbatively (as opposed to QFT S matrices
computed perturbatively; more details below).
27 years later, it is interesting to inquire if fresh evidence
has accumulated for this hope.
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Rigidity of CFTs: I

:
The one (relatively) uncontroversial example we have of a
non perturbative formulation of a quantum theory of gravity
is through AdS/CFT . The (or, perhaps, a) non perturbative
formulation of a gravitational theory in an asymptotically
AdS background is given by the boundary CFT.
CFTs are fixed points of the renormalization group. Happily
they do appear to be (relatively) rigid structures (e.g. this
rigidity underlies the universality of critical phenomena).
This rigidity seems to confirm the expectation spelt out in
the remarks in Polchinski’s book for ‘AdS correlators (see
below for more)
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Floppiness of QFT S matrices

In contrast, S matrices in QFTs are inherently floppy
structures. For example consider 4 electron scattering. If
computed within QED it depends on the mass and charge
of the electron. If computed within the standard model, it
depends on all the parameters of that theory. If computed
within some grand unified or supersymmetric extension of
the standard model, it depends on all the parameters of
that theory. In choosing the true electron S matrix from all
these options we cannot use consistency, but have to rely
on some other input like experiment.
QFT S matrices are, thus, clearly very floppy objects. The
space of QFTs itself is floppy, lacking the rigidity of the
space of CFTs.
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Apparent Paradox and its (obvious) resolution
We seem to have talked ourselves into a paradox. Let us
consider a generic QFT in AdS space. We have argued
above that this is a floppy space. But don’t all these QFTs
in AdS define a boundary conformal field theory? How is
this consistent with the rigidity of the space of CFTs?
Of course the resolution of this false paradox is obvious.
The ‘CFTs’ constructed by placing quantum field theories
in AdS spacetimes are pseudo CFTs: they do not have a
stress tensor or a local Hamiltonian, and so - even in
appropriate gluon like variables - do not obey a 2nd order
differential equation in time.
The only way to get a true CFT on the boundary is to make
the bulk gravitational. And, as we saw at the beginning of
this talk, it is far from unreasonable to suspect that the
space of Gravitational S matrices (i.e. boundary
correlators) in AdS space is essentially discrete. AdS/CFT
asserts that this must be the case.
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Interesting Exercise

It would be interesting to understand this dichotomy
between CFTs with and without an stress tensor better
from a CFT bootstrap (1).
The discussion above tells us that while there are many
many continuous parameters in the generic solution of the
CFT bootstrap equations in CFTs without a stress tensor,
we find an essential rigidity with the stress tensor. Why?
What precisely is the difference from the point of view of
the bootstrap equations? This seems to me to be an
important, and potentially tractable, question, whose
resolution could lead to important progress in
understanding both how gravity is special, from the
viewpoint of the S matrix, as well as the CFT bootstrap on
its own terms.
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Rigidity and the bootstrap I

Lets make one attempt to understand this rigidity from the
viewpoint of the conformal bootstrap. The basic data for a
CFT on Rd is its spectrum of operators, i.e. a list (∆i , Ji)
where i runs over the operators of the theory, and ca

ijk the
three point functions between these operators (a here is a
multiplicity label that takes into account the fact that higher
spin operators have multiple allowed conformally invariant
three point structures).
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Rigidity and the bootstrap: II

:
The basic bootstrap equation on this data is crossing.
Given four operators i , j , k , l , we can compute the
correlator from the formula∑

m,a,b

ca
ijmcb

klmGm,a,b
ij:kl

but also from ∑
n,c,d

cc
jkncd

ilnGn,c,d
jk :il

where Gm,a,b
ij:kl is the conformal block representing the fusion

of ij to m via the 3 point function ca
ijm, contracted with the

fusion of kl to m via the 3 point function cb
jkm.
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Rigidity and the bootstrap: III
Now the blocks Gm,a,b

ij:kl are both ‘basis vectors’ in the space
of solutions of the Ward identities of conformal invariance
(for a 4 point function of ijlm). As a consequence, one can
express every block in the second set as a linear
combination of blocks in the first set

Gn,c,d
jk :il =

∑
m,a,b

F (i , j , k , l ,m,n|a,b, c,d)Gm,a,b
ij:kl

The ‘6 j symbols F are purely kinematical.
Plugging into the second equation above, and equating
coefficients of Gm,a,b

ij:kl , we obtain the equation

ca
ijmcb

klm =
∑
n,c,d

cc
jkncd

ilnF (i , j , k , l ,m,n|a,b, c,d) (1)

Equations labelled by i , j , k , l ,m;a,b. If we think of operator
and degeneracy labels, respectively, as running over N and
D values, we have N5D2 equations for ∼ N3D variables.
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Gravitational rigidity from the bulk?

The fact that More eqns than variables in the equation
above seems to explain the rigidity of CFTs. As we have
seen earlier, however, this cannot be the full explanation,
because the counting above is the same for theories with
and without a stress tensor.
As mentioned above would be very very interesting to
understand this difference in some detail. Can be worded
from the viewpoint of the bulk. Consider an effective field
theory in AdS. Why is there such a big difference between
such a theory with and without gravity?
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Floppiness of Asymptotically Locally AdS Spacetimes

QFTs are defined by flows (seeded by relevant operators)
away from UV CFTs. Thus QFTs can be thought of as
floppy deformations of rigid structures.
Since every atleast some subclasses of CFTs have
gravitational dual descriptions (broadly understood), it
follows from AdS/CFT that the space of gravitational
vacuua can also be floppy. Atleast in the AdS/CFT
example we understand that the floppiness has its origins
in boundary conditions: while bulk gravitational physics
seems rather rigid, boundary conditions can be very floppy.
From a gravitational point of view, the rigidity of AdS × M
spacetimes is effectively rigidity w.r.t. changing the internal
manifold M leaving the AdS part untouched (note that AdS
spacetimes do not exist without an internal manifold).
Deformations of boundary conditions on the AdS part lead
to floppiness.
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A question ‘asymptotically locally flat spacetimes’

Everything I have said so far has been about relatively well
understood (so safe) world of asymptotically AdS
spacetimes. In the rest of this presentation, I now make
some scattered remarks about asymptotically flat vacuua.
The first remark (or really question) concerns the existence
or otherwise, or non normalizable deformations of flat
space. Recall that in the AdS context, these deformations
were changes in boundary conditions (to asymptotically
locally AdS spacetimes) that had a clear interpretation in
terms of turning on a local source for the boundary theory.
A simple question about classical gravity is the following:
do similar deformations exist in asymptotically flat
spacetimes? If yes, why have they not been explored more
intensively (I have never heard a talk on them). If no, what
does this mean about the boundary dual theory (why is it
so tight an hard to deform)?
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Absolute uniqueness in 11 dimensions?

Another difference between flat and AdS spacetimes is
that flat vacuua can exist even without an internal manifold;
we believe that this happens in 11 dimensional M theory. It
seems very likely that Lorentz invariant gravitational S
matrices simply do not exist in higher than 11 dimensions
(in the same way that non free CFTs likely do not exist in
higher than 6 dimensions), and that the gravitational S
matrix 11 dimensions is just absolutely unique (this is not
the case for 6d CFTs).
So our boundary structure appears to take a completely
unique form in 10 (or 9, according to taste) dimensions.
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Almost unique consistent truncations in the classical
limit

Another difference between flat space and AdS is the
following. Consider the compactification Rd × M10−d of
type II string theory. The worldsheet CFT for this
compactification is a direct sum of the Rd and M10−d

CFTs. Consequently the (unnormalized) n point functions
of vertex operators that lie entirely in the Rd part of the
CFT are proportional to each other (the proportionality
constant is the partition function of the M CFT). When the
worldsheet is a sphere, the manifold has no moduli. So the
proportionality constant is simply a number which can be
taken out overall outside. We conclude that all such CFTs
admit a universal consistent truncation in the classical limit.
This consistent truncation is exact in α′. It does not seem
to have any analogues for AdS compactifications (no such
compactification lies entirely within the universal sector: so
the non universality of M CFT seeps into all AdS
spacetimes. Shiraz Minwalla



D → D − 4

Final very speculative point. There seems to be some
correspondence between flat space structures in D
dimensions and AdS spacetimes in D − 4 dimensions. For
instance, while we expect Lorentz invariant flat space
gravity not to exist above 11 dimensions, the same may be
true for AdS spacetimes above 7 dimensions (this is
suggested by examples, but also the folk lore that nontrivial
CFTs do not exist above 6 dimensions).
If this is indeed the case, a similar connection should exist
for the boundary structures. Very roughly, the flat space
boundary structures (very roughly the connection should
be dimensional reduction on very small spheres). If this is
the case, it suggests that CFTs have a parent non
gravitational structures in higher dimensions. If there was
any sense at all in which this was the case, it would, of
course, be extremely interesting.
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Summary

Let me try to summarize the main points I have tried to make in
this presentation.

Correlators in CFTs (with a local stresss tensor) are rigid
structures. S matrices in QFTs are floppy structures.
Maps to the expectation that ‘S matrices’ (boundary
correlators) for gravity in asymptotically AdS spacetimes
are rigid, whereas the same quantities are floppy for QFTs
Would be very interesting to understand the rigidity of
gravity in a bottom up manner from the bulk. And the
difference between the two situations from the viewpoint of
boundary bootstrap. Difference not clear from variable
counting.
Hits for flat space structures: 11d, totally unique? All
dimensions, universal consistent truncation in the classical
limit? D− > D − 4 relationship to AdS?

Shiraz Minwalla


