
Hilbert space and Unitarity

in celestial and carrollian holography

based on 2411.19219 with L. Iacobacci and 2504.10577 with S. Agrawal

Kevin Nguyen

September 9, 2025

ICMS Workshop, Edinburgh



Motivation

What is celestial holography good for?

It should provide a predictive, constraining framework for (gravitational) scattering

[See Shiraz’vision]

Important fundamental questions

What is the Hilbert space in celestial and carrollian holography?

I What is the symmetry group? Is it spontaneously broken?

I Which representations do states belong to? Are they unitary?

There are confusing statements in the literature... including:

I bulk and boundary Hilbert space are different

I Non-unitary

I Problem with translations (shift scaling dimension)

I Undesirable (distributional) two-point functions

I ...
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Unitarity?

It is often said that CCFT is non-unitary, mainly because ∆ ∈ 1 + iR.

However, CCFT is mostly concerned with scattering theory, where states belong to

unitary irreps (UIR) of the Poincaré group.

Certainly, celestial states should belong to UIRs of the Lorentz group.

Proof

U(a,Λ)−1 = U(a,Λ)† ⇒ U(0,Λ)−1 = U(0,Λ)† .

The paradox comes from an abuse of language:

States with ∆ > 0 are unitary w.r.t. SO(2, 2), reflection-positive w.r.t. SO(1, 3).
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Unitary irreps of the Lorentz group



Elementary representations [Dobrev-Mack-Petkova-Petrova-Todorov ’77]

We start from the generators Jµν of SO(1, 3) and split the indices,

Jij , Ji0 = −Pi +Ki

2
, Ji3 =

Pi −Ki

2
, J03 = −D ,

Elementary representations are characterized by states |∆, ~x〉J=±s such that

Pi |∆, ~x〉 = −i∂i |∆, ~x〉 ,

Jij |∆, ~x〉 = −i (xi∂j − xj∂i + iJεij) |∆, ~x〉 ,

D |∆, ~x〉 = i
(

∆ + xi∂i
)
|∆, ~x〉 ,

Ki |∆, ~x〉 = i
(

2xi∆ + 2xix
j∂j − x2∂i + 2iJxjεij

)
|∆, ~x〉 .

Unitarity can be achieved for

• ∆ = 1 + iR (continuous principal series)

• ∆ ∈ (0, 2) for s = 0 (complementary series)

• 2−∆ ∈ N for s = 0 (exceptional discrete series)
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Unitary Hilbert space for ∆ ∈ 1 + iR

We rename |ν, ~x〉J ≡ |∆, ~x〉J for ∆ = 1 + iν. Then a generic ray in the Hilbert

space is of the form

|ψ〉 =
∑
J=±s

∫ ∞
−∞

dν ρ(ν)

∫
d2~xψJ(ν, ~x)|ν, ~x〉J ,

with fixed ρ(ν) and invariant inner product

〈φ|ψ〉 =
∑
J=±s

∫ ∞
−∞

dν ρ(ν)

∫
d2~xφJ(ν, ~x)∗ ψJ(ν, ~x) .

Allowed states have finite positive norm ||ψ|| =
√
〈ψ|ψ〉 <∞.

Physicists will write

J′〈ν′, ~y | ν, ~x〉J =
δ(ν − ν′)δ(~x− ~y)

ρ(ν)
δJJ′ ,

interpreted as a (distributional) two-point function.
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Complementary and discrete series

For ∆ ∈ (0, 2), we have

〈∆, ~x1 |∆, ~x2〉 = |~x12|−2∆ .

For 2−∆ ∈ N, we have

〈∆, ~x1|∆, ~x2〉 = |~x12|−2∆ ln(µ|~x12|) .

The logarithmic two-point function is part of the Hilbert space structure!



Celestial decomposition of scattering states



Poincaré algebra

The standard generators J̃µν , P̃µ satisfy[
J̃µν , J̃ρσ

]
= −i

(
ηµρ J̃νσ + ηνσ J̃µρ − ηµσ J̃νρ − ηνρ J̃µσ

)
,[

J̃µν , P̃ρ
]

= −i
(
ηµρ P̃ν − ηνρ P̃µ

)
.

We split the indices and write

J̃ij = Jij , J̃i0 = −Pi +Ki

2
, J̃i3 =

Pi −Ki

2
, J̃03 = −D ,

and

P̃0 =
H +K√

2
, P̃i = −

√
2Bi , P̃3 =

K −H√
2

.
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Massless particles

Let’s explicitly perform Wigner’s construction of massless particle states. We pick a

reference massless momentum kµ = (1, 0i, 1), left invariant by the little group

generated by 〈Jij ,Ki〉. We specify a representation

Jij |k, J〉 = Jεij |k, J〉 , Ki|k, J〉 = 0 , P̃µ|k, J〉 = kµ|k, J〉 ,

which we then boost to an arbitrary frame [KN-West ’23]

|p(ω, ~x), J〉 ≡ eix
iPi ei lnωD|k, J〉 .

Using the algebra, we can check that

P̃µ|p, J〉 = pµ|p, J〉 , pµ(ω, ~x) = ω (1 + x2, 2~x, 1− x2) .
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The action of the Lorentz generators is

Pi |p〉 = −i∂i |p〉 ,

Jij |p〉 = −i (xi∂j − xj∂i + iJεij) |p〉 ,

D |p〉 = i
(
−ω∂ω + xi∂i

)
|p〉 ,

Ki |p〉 = i
(
−2xiω∂ω + 2xix

j∂j − x2∂i + 2iJxjεij
)
|p〉 .

The Hilbert space contains states of the form

|ψ〉 =
∑
J=±s

∫
[d3p(ω, ~x)]ψJ(ω, ~x)|p(ω, ~x)〉J ,

with [d3p(ω, ~x)] = ω dω d2~x and inner product

〈φ|ψ〉 =
∑
J=±s

∫
[d3p(ω, ~x)]φJ(ω, ~x)∗ ψJ(ω, ~x) .

Finite norm requires

ψJ(ω, ~x) = o
(
ω−1) , (ω → 0) .
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Branching down to Lorentz

Main question

How do massless ISO(1, 3) irreps decompose w.r.t. SO(1, 3)?

The answer is given by the familiar Mellin transform:

[Mukunda ’68, de Boer-Solodukhin ’03, Cheung-Fuente-Sundrum ’16, Pasterski-Shao ’17]

ψJ(∆, ~x) =
1√
2π

∫ ∞
0

dω ω∆−1 ψJ(ω, ~x) .

This is holomorphic on the complex half-plane Re(∆) ≥ 1. The inverse transform

ψJ(ω, ~x) =
1√
2πi

∫ c+i∞

c−i∞
d∆ω−∆ ψJ(∆, ~x) ,

is valid when no singularity lies to the right of the integration path.

The bordeline choice c = 1 yields a decomposition over the principal series!
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A comment about translations

An apparent paradox

It seems that translations take states outside the principal series:

P̃ 0|∆,~0 〉 =
1√
2π

∫ ∞
0

dω ω∆|p(ω,~0)〉 = |∆ + 1,~0 〉 .

They would violate unitarity.

Group theory immediately tells us that this cannot be correct.

Proper treatment

e−ia
µP̃µ |ν, ~x〉 =

1√
2π

∫ ∞
0

dω ωiνe−iωa
µqµ(~x)|p(ω, ~x)〉

=
1

(2π)3/2

∫ ∞
−∞

dν′
Γ(ε+ i(ν − ν′))

(iaµqµ(~x) + ε)i(ν−ν′)

∫ ∞
0

dω ωiν
′
|p(ω, ~x)〉

=
1

2π

∫ ∞
−∞

dν′
Γ(ε+ i(ν − ν′))

(iaµqµ(~x) + ε)i(ν−ν′)
|ν′, ~x〉
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Massive scalar particles

Harmonic analysis

Simply put, we want to decompose a generic normalizable spinning wavefunction

ψσ(p̂) over the mass-shell p̂ ∈ H3 onto a basis of functions which provide a

realization of the Lorentz UIRs.

The boundary-bulk propagators provide this basis,

Gν(p̂; ~x) =
1

(−p̂ · q(~x))∆ν
, ∆ν = 1 + iν .

We can check that they satisfy the Casimir condition

JµνJ
µνGν(p̂; ~x) = ∆HGν(p̂; ~x) = [∆ν(∆ν − d)]Gν(p̂; ~x) , ∀~x ∈ R2 .

Note: ~x is the analogue of angular momentum m = −`, ..., ` for spherical harmonics.

Result [MacDowell-Roskies ’72, de Boer-Solodukhin ’03, Pasterski-Shao-Strominger ’17]

|p〉 =

∫ ∞
0

dν µ(ν)

∫
d2~xG−ν(p̂; ~x) |ν, ~x〉 , µ(ν) = Plancherel measure
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Massive spinning particles [Iacobacci-KN ’24]

Closely related to massive primary wavefunctions: [Law-Zlotnikov ’20, Iacobacci-Muck ’20]

Main technicality

Massive particles carry SO(3)-spin, but continuous principal series carry

SO(2)-spin. Part of the harmonic decomposition thus features

V SO(3)
s =

s⊕
`=0

V
SO(2)
`

We did half-integer spin in arbitrary dimension. This is highly technical, fortunately

we could recycle formulae from [Costa-Goncalves-Penedones ’14, Iacobacci-Muck ’20].



BMS symmetries and spontaneous breaking



BMS supertranslations

BMS group

BMS4 = SO(1, 3) n E−1(S2) .

Supertranslation charges can be written

QT (u) =

∫
S2
u

d2~xT (~x)M(u, ~x) ,

with the covariant Bondi mass aspect satisfying the current non-conservation

∂uM =
1

4

(
∂i∂jNij + Cij∂uNij

)
− κ2 Tuu

u→−∞∼ 0 .

such that QT (u) is the canonical generator only near spatial infinity.



BMS Ward identities

Reminder: carrollian conformal fields = massless particles

O∆,J(u, ~x) =

∫ ∞
0

dω ω∆−1eiωua†J(p(ω, ~x)) ,

Supertranslations act on the carrollian fields by

[QT , O∆,J(x)] = i T (~x) ∂uO∆,J(x) .

From this we can derive the Ward identity

〈0|QT O1(x1) ... On(xn)−O1(x1) ... On(xn)QT |0〉

= i
n∑
a=1

T (~xa)∂ua〈0|O1(x1) ... On(xn)|0〉 .

If the RHS is nonzero (order parameter), we will be forced to conclude SSB

QT |0〉 6= 0 .



Soft graviton theorem implies SSB

We assume the validity of Weinberg’s soft theorem,

lim
ω→0

ω Sn+1 (p1 , ... , pn ;ωq(~y), εi) = κ

n∑
a=1

(pa · εi(~y))2

pa · q(~y)
Sn (p1 , ... , pn)

= κ
n∑
a=1

ωa
4(yi − xia)2

|~y − ~xa|2
Sn (p1 , ... , pn) .

We transform the n hard legs to carrollian basis,

lim
ω→0

ω
[
〈O1(x1)...On(xn)a†i (ωq(~y))〉−〈ai(ωq(~y))O1(x1)...On(xn)〉

]
= −iκ

n∑
a=1

2(yi − xia)2

|~y − ~xa|2
∂ua〈O1(x1)...On(xn)〉 .

This is the Ward identity with

T (~xa; ~y, εi) =
2(yi − xia)2

|~y − ~xa|2
, QT |0〉 ≡ lim

ω→0
ωa†i (ωq(~y))|0〉 .



Carrollian Goldstone theorem

Spontaneous symmetry breaking is characterised by

〈0|[QT , O]|0〉 6= 0 ,

where in this case O = O1(x1) ... On(xn). We insert a resolution of the identity on

the Hilbert space,

〈0|[QT , O]|0〉 =
∑
n

[〈0|QT |n〉〈n|O|0〉 − 〈0|O|n〉〈n|QT |0〉] ,

and there must exist at least one particle species |G〉 such that

〈0|QT |G〉 6= 0 , ↔ lim
u→−∞

〈0|M(u, ~x)|G〉 6= 0 .



Carrollian Goldstone theorem

But current conservation near spatial infinity requires

0 = 〈0|∂uM(u, ~x)|G〉 = ∂u〈0|e−iuHM(0, ~x) eiuH |G〉
∣∣∣
u→−∞

Hence the Goldstone particle cannot be one of Wigner’s particles,

H|p(ω, ~x)〉 = ω|p(ω, ~x)〉 6= 0 .

Instead it is a simple Lorentz UIR in the exceptional discrete series:

|∆, ~x 〉G = G∆(~x)|0〉 , ∆ = −1 .

The corresponding two-point function,

G〈∆, ~x1|∆, ~x2〉G = N |~x12|−2∆ ln(µ|~x12|) ,

directly agrees with earlier discussion of IR divergences!

[Nande-Pate-Strominger ’17, Himwich-Narayanan-Pate-Paul-Strominger ’20]



Lessons



Lessons

Main message

Group theory provides very rigid mathematical structures for CCFT!

We have learned that

I Unitarity is well and alive

I Celestial primaries with ∆ ∈ 1 + iR describe scattering states

I Celestial primaries with ∆ = 0,−1, .. describe Goldstone/soft modes

They necessarily have logarithmic two-point functions

I Supertranslations are spontaneously broken

Warning

Standard CFT does not apply!

In CCFT we have unitarity rather than reflection-positivity !

A general framework is still lacking. A good starting point would be a rigorous

conformal block expansion [Gadde’17].
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