On the Schur elements and generalized graded cellular bases for cyclotomic Hecke-Clifford algebras

Lei Shi

Max-Planck-Institut für Mathematik

Joint work with Shuo Li

18.11.2025

1 Cyclotomic Hecke-Clifford algebras (cHCAs)

(Super)symmetrizing forms and Schur elements of cHCAs

Generalized graded cellular bases of cHCAs

- 1 Cyclotomic Hecke-Clifford algebras (cHCAs)
- (Super)symmetrizing forms and Schur elements of cHCAs
- Generalized graded cellular bases of cHCAs

Hecke-Clifford algebra

Let $\mathbb K$ be an algebraically closed field with $\operatorname{Char}(\mathbb K) \neq 2, \ q \in \mathbb K^*$ satisfying $q^2 \neq \pm 1$, and denote $\epsilon := q - q^{-1} \in \mathbb K^*$.

Definition (Hecke-Clifford algebra)

The superalgebra $\mathcal{H}_n^{\text{fin}}$ has the presentation with (even) generators T_1, \ldots, T_{n-1} and (odd) generators C_1, \ldots, C_n , subjecting to the relations:

$$\begin{split} T_i^2 &= \epsilon \, T_i + 1, \quad T_i T_j = T_j T_i, \quad T_i T_{i+1} \, T_i = T_{i+1} \, T_i T_{i+1}, \quad |i-j| > 1, \\ C_i^2 &= 1, \, C_i C_j = -C_j C_i, \quad 1 \leq i \neq j \leq n, \\ T_i C_i &= C_{i+1} \, T_i, \, T_i C_j = C_j T_i, \quad j \neq i, i+1. \end{split}$$

G. I. Olshanski, Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra, *Lett. Math. Phys.*, **24** (1992), 93–102.

Affine Hecke-Clifford algebra

Definition (Affine Hecke-Clifford algebra)

The superalgebra \mathcal{H}_n has the presentation with (even) generators $X_1^{\pm 1}, \ldots, X_n^{\pm 1}, T_1, \ldots, T_{n-1}$ and (odd) generators C_1, \ldots, C_n , subjecting to:

$$\begin{split} T_i^2 &= \epsilon \, T_i + 1, \quad T_i T_j = T_j T_i, \quad T_i T_{i+1} \, T_i = T_{i+1} \, T_i T_{i+1}, \quad |i-j| > 1, \\ C_i^2 &= 1, \, C_i C_j = -C_j C_i, \quad 1 \leq i \neq j \leq n, \\ T_i C_i &= C_{i+1} \, T_i, \, T_i C_j = C_j T_i, \quad j \neq i, i+1. \end{split}$$

A. Jones and M. Nazarov, Affine Sergeev algebra and q-analogues of the Young symmetrizers for projective representations of the symmetric group, *Proc. London Math. Soc.*, **78** (1999), 481–512.

Affine Hecke-Clifford algebra (continue)

Definition (Continue)

and more relations:

$$X_{i}X_{j} = X_{j}X_{i}, X_{i}X_{i}^{-1} = X_{i}^{-1}X_{i} = 1 \quad 1 \leq i, j \leq n,$$

$$T_{i}X_{i} = X_{i+1}T_{i} - \epsilon(X_{i+1} + C_{i}C_{i+1}X_{i}),$$

$$T_{i}X_{i+1} = X_{i}T_{i} + \epsilon(1 + C_{i}C_{i+1})X_{i+1},$$

$$T_{i}X_{j} = X_{j}T_{i}, \quad j \neq i, i+1,$$

$$X_{i}C_{i} = C_{i}X_{i}^{-1}, X_{i}C_{j} = C_{j}X_{i}, \quad 1 \leq i \neq j \leq n.$$

A. Jones and M. Nazarov, Affine Sergeev algebra and q-analogues of the Young symmetrizers for projective representations of the symmetric group, *Proc. London Math. Soc.*, **78** (1999), 481–512.

q-values and b-values

Definition

For any $\iota \in \mathbb{K}^*$, we define

$$\begin{aligned} \mathbf{q}(\iota) &:= 2 \frac{q\iota + (q\iota)^{-1}}{q + q^{-1}} \in \mathbb{K}, \\ \mathbf{b}_{\pm}(\iota) &:= \frac{\mathbf{q}(\iota)}{2} \pm \sqrt{\frac{\mathbf{q}(\iota)^2}{4} - 1} \in \mathbb{K}^*. \end{aligned}$$

In fact, we have

$$\mathtt{b}_+(\iota) + \mathtt{b}_-(\iota) = \mathtt{q}(\iota), \quad \mathtt{b}_+(\iota)\mathtt{b}_-(\iota) = 1.$$

Cyclotomic Hecke-Clifford algebra

• We fix $m \geq 0$ and $\underline{Q} = (Q_1, Q_2, \dots, Q_m) \in (\mathbb{K}^*)^m$.

Definition (Cyclotomic Hecke-Clifford algebra)

We define

$$\begin{split} f \! := \left\{ \begin{aligned} & f_{\underline{Q}}^{(0)} = \prod_{i=1}^m \biggl(X_1 + X_1^{-1} - \operatorname{q}(Q_i) \biggr), \\ & f_{\underline{Q}}^{(\mathrm{s})} = (X_1 - 1) \prod_{i=1}^m \biggl(X_1 + X_1^{-1} - \operatorname{q}(Q_i) \biggr), \\ & f_{\underline{Q}}^{(\mathrm{ss})} = (X_1 - 1)(X_1 + 1) \prod_{i=1}^m \biggl(X_1 + X_1^{-1} - \operatorname{q}(Q_i) \biggr). \end{aligned} \right. \end{split}$$

Then the cyclotomic Hecke-Clifford algebra \mathcal{H}_n^f is defined as $\mathcal{H}_n^f:=\mathcal{H}_n/\mathcal{H}_nf\mathcal{H}_n$.

J. Brundan, A. Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2\ell}^{(2)}$ and modular branching rules for $\widetilde{S_n}$, Represent. Theory, **5** (2001), 317–403.

$A_{2\ell}^{(2)}$ -Categorification

- The field $\mathbb K$ is algebraically closed and $\operatorname{Char}(\mathbb K) \neq 2\ell+1,2.$
- $\mathfrak{g}=A_{2\ell}^{(2)},\,I=\{0,1,\ldots,\ell\},\,\Lambda\in P_+$ be any dominant integral weight.
- q^2 is a primitive 2l+1-th root of unity.
- $K(\infty) := \bigoplus_{n>0} K(\mathsf{Rep}\mathcal{H}_n)$.
- ullet $K(\Lambda):=igoplus_{n\geq 0}K({\operatorname{Rep}}\mathcal{H}_n^\Lambda),$ where we set

$$f = f_{\Lambda} = (X_1 - 1)^{a_0} \prod_{i \in I \setminus \{0\}} (X_1 + X_1^{-1} - q(q^{2i}))^{a_i},$$

if $\Lambda = a_0 \Lambda_0 + \sum_{i \in I \setminus \{0\}} a_i \Lambda_i$.

• $K(\infty)^*$, $K(\Lambda)^*$ are the grading dual of $K(\infty)$, $K(\Lambda)$, respectively.

$A_{2\ell}^{(2)}$ -Categorification

Theorem (Brundan-Kleshchev)

- (A) There exists isomorphism $K(\infty)^* \simeq U_{\mathbb{Z}}^+(\mathfrak{g})$ as graded (cocommutative) Hopf algebras;
- (B) For any dominant integral weight Λ , there exists $U_{\mathbb{Z}}(\mathfrak{g})$ -module isomorphism $K(\Lambda)^* \simeq V_{\mathbb{Z}}(\Lambda)$;
- (C) {The isomorphic classes of simple modules} \simeq {Kashiwara's crystal basis}.

J. Brundan, A. Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2\ell}^{(2)}$ and modular branching rules for $\widetilde{S_n}$, Represent. Theory, **5** (2001), 317–403.

\mathbb{Z} -graded versions

 Kang-Kashiwara-Tsuchioka introduced the (cyclotomic) quiver Hecke superalgebras and (cyclotomic) quiver Hecke-Clifford superalgebras, and proved that

Theorem (Kang-Kashiwara-Tsuchioka)

For type $A_{\infty}, B_{\infty}, C_{\infty}, A_{l-1}^{(1)}, A_{2l}^{(2)}, C_l^{(1)}, D_{l+1}^{(2)}$, cyclotomic quiver Hecke-Clifford superalgebra RC_n^{Λ} is isomorphic to cyclotomic Hecke-Clifford superalgebra \mathcal{H}_n^{Λ} .

S.-J. Kang, M. Kashiwara and S. Tsuchioka, Quiver Hecke superalgebras, *J. Reine Angew. Math.*, **711** (2016), 1–54.

Combinatorics

For $m \ge 0$, we set

$$\begin{split} \mathscr{P}_{n}^{0,m} &:= \mathscr{P}_{n}^{m}, \\ \mathscr{P}_{n}^{\mathbf{s},m} &:= \cup_{a=0}^{n} (\mathscr{P}_{a}^{\mathbf{s}} \times \mathscr{P}_{n-a}^{m}), \\ \mathscr{P}_{n}^{\mathbf{ss},m} &:= \cup_{a+b+c=n} (\mathscr{P}_{a}^{\mathbf{s}} \times \mathscr{P}_{b}^{\mathbf{s}} \times \mathscr{P}_{c}^{m}). \end{split}$$

We also have the set of standard tableaux $\operatorname{Std}(\mathscr{P}_n^{\bullet,m})$ for $\bullet \in \{0,\mathsf{s},\mathsf{ss}\}.$

Semisimple representation theory of cHCAs

• Shi-Wan introduced a Poincaré polynomial $P_n^{(\bullet)}(q^2,\underline{Q})$ for the cyclotomic Hecke-Clifford algebras.

Theorem (Shi-Wan, 2025)

Suppose that $P_n^{(\bullet)}(q^2,\underline{Q}) \neq 0$ for $\bullet \in \{0,s,ss\}$. Then \mathcal{H}_n^f is split semisimple over \mathbb{K} , and all the simple modules $\{\mathbb{D}(\underline{\lambda}) \mid \underline{\lambda} \in \operatorname{Std}(\mathscr{P}_n^{\bullet,m})\}$ are classified.

L. Shi, J. Wan, *On representation theory of cyclotomic Hecke-Clifford algebras*, arXiv:2501.06763.

Primitive idempotents and seminormal bases of cHCAs

- Based on Shi-Wan's work, Li-Shi constructed the complete set of primitive idempotents and seminormal bases for the (semisimple) cyclotomic Hecke-Clifford algebras (and cyclotomic Sergeev algebras).
- Kashuba-Molev-Serganova constructed the complete set of primitive idempotents (inductively) and seminormal bases for the Sergeev algebra.
- S. Li, L. Shi, Seminormal bases of cyclotomic Hecke-Clifford algebras, Lett. Math. Phys., 115, (2025), 10.1007/s11005-025-01998-x.
 - I. Kashuba, A. Molev and V. Serganova, *On the Jucys-Murphy method and fusion procedure for the Sergeev superalgebra*, J. Lond. Math. Soc. (2), **112**(3) (2025), Paper No. e70302.

- ① Cyclotomic Hecke-Clifford algebras (cHCAs)
- (Super)symmetrizing forms and Schur elements of cHCAs
- Generalized graded cellular bases of cHCAs

Symmetrizing forms of superalgebras

• Let $\mathcal{A} = \mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}}$ be an R-superalgebra, which is finitely generated free as R-module, $|\cdot| : \mathcal{A} \to \mathbb{Z}_2$ be the parity map.

Symmetrizing forms of superalgebras

• Let $\mathcal{A} = \mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}}$ be an R-superalgebra, which is finitely generated free as R-module, $|\cdot| : \mathcal{A} \to \mathbb{Z}_2$ be the parity map.

Definition

The superalgebra \mathcal{A} is **symmetric** if \exists R-linear map $t: \mathcal{A} \to R$ with $t(\mathcal{A}_{\overline{1}}) = 0$ such that t(xy) = t(yx) for any $x, y \in \mathcal{A}$ and t is non-degenerate.

Definition

The superalgebra $\mathcal A$ is **supersymmetric** if \exists R-linear map $t:\mathcal A\to \mathbf R$ with $t(\mathcal A_{\overline{1}})=0$ such that $t(xy)=(-1)^{|x||y|}t(yx)$ for any homogeneous $x,y\in\mathcal A$ and t is non-degenerate.

Frobenius forms of cHCAs

Proposition (Brundan-Kleshchev, 2001)

Let $\alpha = (\alpha_1, \dots, \alpha_n) \in [0, r-1]^n$, $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}_2^n$ and $w \in \mathfrak{S}_n$, we define the R-linear map $\tau_{r,n}$ by

$$\tau_{r,n}(X^{\alpha}C^{\beta}T_w) := \delta_{(\alpha,\beta,w),(0,0,1)}.$$

Then $\tau_{r,n}$ is a Frobenius form of \mathcal{H}_n^f over R.

Frobenius forms of cHCAs

Proposition (Brundan-Kleshchev, 2001)

Let $\alpha=(\alpha_1,\ldots,\alpha_n)\in[0,r-1]^n,\ \beta=(\beta_1,\ldots,\beta_n)\in\mathbb{Z}_2^n$ and $w\in\mathfrak{S}_n$, we define the R-linear map $\tau_{r,n}$ by

$$\tau_{r,n}(X^{\alpha}C^{\beta}T_w) := \delta_{(\alpha,\beta,w),(0,0,1)}.$$

Then $\tau_{r,n}$ is a Frobenius form of \mathcal{H}_n^f over R.

Remark

In general, the form $\tau_{r,n}$ is not (super)symmetric $(\tau_{r,n}(xy) \neq \tau_{r,n}(yx))!$

(Super)symmetrizing form of cHCAs

Recall the level $r = \deg f$, and r = 2m if $\bullet = \mathtt{0}$, and r = 2m + 1 if $\bullet = \mathtt{s}$.

(Super)symmetrizing form of cHCAs

Recall the level $r = \deg f$, and r = 2m if $\bullet = \mathtt{0}$, and r = 2m + 1 if $\bullet = \mathtt{s}$.

Theorem (Li-Shi, 2025)

Let R be an integral domain with $Char(R) \neq 2$. Suppose that $q, q + q^{-1} \in R^{\times}$ and $Q \in (R^{\times})^m$. Then we have the following.

(i) If ullet = 0, then \mathcal{H}_n^f is supersymmetric with the supersymmetrizing form

$$t_{r,n} := \tau_{r,n} \Big(- \cdot (X_1 X_2 \cdots X_n)^m \Big);$$

(ii) If $\bullet = s$, and $(1 + X_1)(1 + X_2) \cdots (1 + X_n)$ is invertible in \mathcal{H}_n^f , then \mathcal{H}_n^f is symmetric with the symmetrizing form

$$t_{r,n} := \tau_{r,n} \Big(- (X_1 X_2 \cdots X_n)^m (1 + X_1) (1 + X_2) \cdots (1 + X_n) \Big).$$

Symmetrizing form of $\mathcal{H}_n^{\mathsf{fin}}$

Proposition

Suppose that q is not a primitive 4l-th root of unity for $l \in \{1, 2, \cdots, n\}$, then $\mathcal{H}_n^{\mathit{fin}}$ is a symmetric superalgebra with symmetrizing form $t_{1,n}$.

Remark

Wan and Wang also gave a symmetrizing form τ_n^{WW} on $\mathcal{H}_n^{\mathrm{fin}}$ over $\mathbb{C}(q)$, where q is an indeterminate, and computed the corresponding Schur elements.

Schur elements in symmetric case

For any $V \in Irr(A)$, we write

$$\delta(\mathit{V}) := \left\{ \begin{array}{ll} 0, & \text{if } \mathit{V} \text{ is of } \mathit{type} \; \mathtt{M}; \\ 1, & \text{if } \mathit{V} \text{ is of } \mathit{type} \; \mathtt{Q}. \end{array} \right.$$

Schur elements in symmetric case

For any $V \in Irr(A)$, we write

$$\delta(\mathit{V}) := \left\{ \begin{array}{ll} 0, & \text{if } \mathit{V} \text{ is of } \mathit{type} \; \mathtt{M}; \\ 1, & \text{if } \mathit{V} \text{ is of } \mathit{type} \; \mathtt{Q}. \end{array} \right.$$

Proposition (Wan-Wang, 2013)

Suppose $\mathcal A$ is a split semisimple superalgebra over $\mathbb K$ and $\mathcal A$ is symmetric with a symmetrizing form t. Then the **Schur element** c_V for every irreducible $\mathcal A$ -module V is non-zero. Moreover,

$$t = \sum_{V \in \operatorname{Irr}(\mathcal{A})} \frac{1}{2^{\delta_V} c_V} \chi_V.$$

Schur elements in supersymmetric case

Proposition (Li-Shi,2025)

Suppose A is a split semisimple superalgebra over $\mathbb K$ and A is supersymmetric with a supersymmetrizing form t. Then

Schur elements in supersymmetric case

Proposition (Li-Shi,2025)

Suppose ${\cal A}$ is a split semisimple superalgebra over ${\mathbb K}$ and ${\cal A}$ is supersymmetric with a supersymmetrizing form t. Then

(i) Every irreducible A-module V is of type M, and the **Schur element** c_V is non-zero.

Schur elements in supersymmetric case

Proposition (Li-Shi,2025)

Suppose $\mathcal A$ is a split semisimple superalgebra over $\mathbb K$ and $\mathcal A$ is supersymmetric with a supersymmetrizing form t. Then

- (i) Every irreducible A-module V is of type M, and the **Schur element** c_V is non-zero.
- (ii) If we fix the choice of representative in each isomorphism class of simple module, then we have

$$t = \sum_{V \in \operatorname{Irr}(\mathcal{A})} \frac{1}{c_V} \chi'_V.$$

Schur elements of cHCAs

Theorem (Li-Shi, 2025)

Suppose that $\bullet \in \{0, s\}$ and $P_n^{(\bullet)}(q^2, \underline{Q}) \neq 0$ holds. Let $\underline{\lambda} \in \mathscr{P}_n^{\bullet, m}$, then the Schur element $c_{\underline{\lambda}}$ of simple \mathcal{H}_n^f -module $\mathbb{D}(\underline{\lambda})$ with respect to $t_{r,n}$ is given by

$$c_{\underline{\lambda}} = \begin{cases} \prod\limits_{\alpha \in \underline{\lambda}} \left(\mathbf{b}_{-}(\operatorname{res}(\alpha)) - \mathbf{b}_{+}(\operatorname{res}(\alpha)) \right) \cdot \mathbf{q}(\underline{\lambda})^{-1}, & \text{if } \bullet = \mathbf{0}, \\ 2^{-\lceil \sharp \mathcal{D}_{\underline{\lambda}}/2 \rceil} \cdot \mathbf{q}(\underline{\lambda})^{-1}, & \text{if } \bullet = \mathbf{s}, \end{cases}$$

where

$$q(\underline{\lambda}) := \prod_{k=1}^n \frac{\prod\limits_{\beta \in \operatorname{Rem}(\mathfrak{t}\downarrow_{k-1}) \setminus \mathcal{D}} (q(\operatorname{res}_{\mathfrak{t}}(k)) - q(\operatorname{res}(\beta)))}{\prod\limits_{\alpha \in \operatorname{Add}(\mathfrak{t}\downarrow_{k-1}) \setminus \{\mathfrak{t}^{-1}(k)\}} (q(\operatorname{res}_{\mathfrak{t}}(k)) - q(\operatorname{res}(\alpha)))},$$

for $\mathfrak{t} \in \operatorname{Std}(\underline{\lambda}), \underline{\lambda} \in \mathscr{P}_n^{\bullet, m}$.

4 D > 4 E > 4 Q Q

- ① Cyclotomic Hecke-Clifford algebras (cHCAs)
- (Super)symmetrizing forms and Schur elements of cHCAs
- 3 Generalized graded cellular bases of cHCAs

Theorem (Li-Shi,2025)

Suppose $f = f_{\underline{Q}}^{(0)}$. The cyclotomic Hecke-Clifford algebra $\mathcal{H}_{\mathbb{K}}^{\underline{Q}}$ is a generalized graded cellular superalgebra.

Definition

Suppose A is a \mathbb{Z} -graded R-superalgebra which is free of finite rank over R and R is concentrated on both \mathbb{Z} and \mathbb{Z}_2 degree 0. A **generalized graded super cell datum** for A is an ordered hexaple $(\mathscr{P},\mathscr{T},\mathscr{B},C,\deg,|\cdot|)$, where (\mathscr{P},\lhd) is the **weight poset**, $\mathscr{T}(\lambda)$ and \mathscr{B}_{λ} are finite sets for $\lambda\in\mathscr{P}$, \mathscr{B}_{λ} is a homogeneous R-basis of R-superalgebra B_{λ} (which is concentrated on \mathbb{Z} -degree 0) for $\lambda\in\mathscr{P}$ and $C:\bigsqcup_{\lambda\in\mathscr{P}}\mathscr{T}(\lambda)\times B_{\lambda}\times\mathscr{T}(\lambda)\to A; (i,u,j)\mapsto c_{i,u,j}^{\lambda},\deg:\bigsqcup_{\lambda\in\mathscr{P}}\mathscr{T}(\lambda)\to \mathbb{Z}$, $|\cdot|:\bigsqcup_{\lambda\in\mathscr{P}}\mathscr{T}(\lambda)\to\mathbb{Z}_2$ are three fuctions such that C is injective. Moreover, we have the following conditions.

Definition (Continue)

(GCd) Each basis element $c_{i,u,j}^{\lambda}$ is homogeneous of \mathbb{Z} -degree $\deg(i) + \deg(j)$ and \mathbb{Z}_2 -degree |i| + |j| + |u|, where $i,j \in \mathscr{T}(\lambda), u \in \mathscr{B}_{\lambda}, \lambda \in \mathscr{P}$.

 $(\mathsf{GC1})\{c_{i,u,j}^{\lambda}|\ i,j\in\mathscr{T}(\lambda),u\in\mathscr{B}_{\lambda},\lambda\in\mathscr{P}\}\ \text{forms a homogeneous}\ R\text{-basis of}\ A\ \text{for}\ i,j\in\mathscr{T}(\lambda),u\in\mathscr{B}_{\lambda},\lambda\in\mathscr{P}.$

(GC2) We have $c_{i,u,j}^{\lambda} + c_{i,u',j}^{\lambda} = c_{i,u+u',j}^{\lambda}$ for $i,j \in \mathcal{T}(\lambda), u,u' \in B_{\lambda}, \lambda \in \mathcal{P}$. (GC3) For any $i,j,i',j' \in \mathcal{T}(\lambda), u,u',u'' \in \mathcal{B}_{\lambda}, \lambda \in \mathcal{P}$, we have a function

(GC3) For any $i,j,i,j' \in \mathscr{S}(\lambda), u,u',u'' \in \mathscr{B}_{\lambda}, \lambda \in \mathscr{P}$, we have a function $r_{i,u'}^{i',u'}:A \to R:a \mapsto r_{i,u'}^{i',u'}(a)$ such that for any $a \in A$ and $c_{i,u,j}^{\lambda}$ where $i,j \in \mathscr{T}(\lambda), u \in \mathscr{B}_{\lambda}, \lambda \in \mathscr{P}$, we have

$$ac_{i,uu'',j}^{\lambda} = \sum_{\substack{i' \in \mathcal{F}(\lambda) \\ u' \in \mathcal{B}_{\lambda}}} r_{i,u}^{i',u'}(a) c_{i',u'u'',j}^{\lambda} \pmod{A^{\triangleleft \lambda}},$$

where

$$A^{\lhd \lambda} := \sum_{\substack{(i,u,j) \in \mathscr{T}(\mu) \times B_{\mu} \times \mathscr{T}(\mu) \\ \mu \lhd \lambda}} Rc_{i,u,j}^{\lambda}.$$

Definition (Continue)

(GC4) For each $\lambda\in\mathscr{P}$, there is an R-algebraic anti-involution ω_{λ} on B_{λ} and the R-linear map $*:A\to A$ determined by $(c_{i,u,j}^{\lambda})^*=c_{j,\omega_{\lambda}(u),i}^{\lambda}$ where $i,j\in\mathscr{T}(\lambda),u\in\mathscr{B}_{\lambda},\lambda\in\mathscr{P}$ is an anti-isomorphism of A.

A generalized graded cellular superalgebra is a \mathbb{Z} -graded superalgebra which has a generalized graded super cell datum . The basis $\{c_{i,u,i}^{\lambda}|\ i,j\in\mathcal{T}(\lambda),u\in\mathcal{B}_{\lambda},\lambda\in\mathcal{P}\}$ is a generalized graded super cellular

basis of A.

Remark

- (1). Our generalized graded cellular superalgebra is a special case of generalized standardly based algebra (Mori, 2014).
- (2).If we forget the \mathbb{Z}_2 grading, and $B_{\lambda}=R,\,\omega_{\lambda}=\mathrm{id}_R$ for all $\lambda\in\mathscr{P}$,then we recover the definition of \mathbb{Z} -graded cellular algebra (Hu-Mathas, 2010).
- (3).If we further forget the \mathbb{Z} -grading, then we recover the original definition of cellular algebra (Graham-Lehrer,1996).

Corollary

- (1).[Hu-Mathas,2010; Evseev-Mathas,2024] Let R^{Λ}_{α} be the cyclotomic quiver Hecke algebra of type $A^{(1)}_{l-1}$ or $C^{(1)}_l$. Then R^{Λ}_{α} is a cellular algebra.
- (2). Let R_{α}^{Λ} be the cyclotomic quiver Hecke superalgebra of type $A_{2l}^{(2)}$, and $\Lambda = a_0 \Lambda_0 + \Sigma_{i \in I \setminus \{0\}} a_i \Lambda_i$ with $a_0 \in 2\mathbb{Z}$. Then $R_{\alpha}^{\Lambda} \otimes C_{\ell(\alpha)}$ is a generalized graded cellular superalgebra.
- (3). Let R_{α}^{Λ} be the cyclotomic quiver Hecke superalgebra of type $D_{l+1}^{(2)}$, and $\Lambda = a_0\Lambda_0 + \sum_{i \in I \setminus \{0,l\}} a_i\Lambda_i + a_l\Lambda_l$ with $a_0, a_s \in 2\mathbb{Z}$. Then $R_{\alpha}^{\Lambda} \otimes C_{\ell(\alpha)}$ is a generalized graded cellular superalgebra.

Thank You!

