Representations of Quantum Symmetric Pairs at Roots of 1

Jinfeng Song joint with Weinan Zhang

The Hong Kong University of Science and Technology

New perspectives in quantum representation theory, ICMS November 19, 2025

Quantum groups

- $\mathfrak{g} = \mathbb{C}\langle e_i, f_i, h_i \mid i \in I \rangle / \sim$: complex semisimple Lie algebra;
- $P = \mathbb{Z}[\omega_i \mid i \in I]$: weight lattice; $Q = \mathbb{Z}[\alpha_i \mid i \in I]$: root lattice
- U = $U_q(\mathfrak{g}) = \mathbb{C}(q)\langle E_i, F_i, K_\mu \mid i \in I, \mu \in P \rangle / \sim$: simply-connected quantum group

$$\begin{split} &K_{\mu}E_{i}=q^{\langle\mu,\alpha_{i}\rangle}E_{i}K_{j},\quad K_{\mu}F_{i}=q^{-\langle\mu,\alpha_{i}\rangle}F_{i}K_{j},\\ &[E_{i},F_{j}]=\delta_{ij}\frac{K_{\alpha_{i}}-K_{-\alpha_{i}}}{q_{i}-q_{i}^{-1}},\\ &\sum_{r=0}^{1-c_{ij}}(-1)^{r}\begin{bmatrix}1-c_{ij}\\r\end{bmatrix}_{i}E_{i}^{r}E_{j}E_{i}^{1-c_{ij}-r}=0\quad (i\neq j),\\ &\sum_{r=0}^{1-c_{ij}}(-1)^{r}\begin{bmatrix}1-c_{ij}\\r\end{bmatrix}_{i}F_{i}^{r}F_{j}F_{i}^{1-c_{ij}-r}=0\quad (i\neq j). \end{split}$$

Symmetric pairs and Satake diagrams

- g: complex semisimple Lie algebra;
- \bullet $\theta: \mathfrak{g} \to \mathfrak{g}$: involution on \mathfrak{g} ;
- $\mathfrak{k} = \mathfrak{g}^{\theta}$: reductive subalgebra
- $(\mathfrak{g}, \mathfrak{k})$: symmetric pair \leadsto $(I = I_{\circ} \sqcup I_{\bullet}, \tau)$: Satake diagram

Table 4. Satake diagrams of irreducible symmetric pairs

	_		
AI	0-0	DIII	•
AII	•		•
AIII		EI	°°°
	Ç	ЕП	•
AIV	•	ЕШ	•
BI	o— o - • · - • ⇒ •	EIV	·
BII	∘	EV	• • • • • • • • • • • • • • • • • • • •
CI	∘	EIV	•
CII	•	EVII	0-0
	•	EVIII	0-0-0-0-0-0
	•	EIX	•••••
DI	¢	FI	0-0-0-0
	·	FII	•-•
DII	·	G	∘⇒∘

Quantum symmetric pairs

 $lackbox{ } (U(\mathfrak{g}),U(\mathfrak{k}))$: symmetric pair $\leadsto (\mathrm{U},\mathrm{U}^{\imath})$: quantum symmetric pairs

Definition (Letzter, Kolb)

The \imath quantum group U^\imath associated with $(\mathfrak{g},\mathfrak{k})$ is the $\mathbb{C}(q)$ -subalgebra of U generated by

$$B_{i} = F_{i} + \varsigma_{i} T_{w_{\bullet}}(E_{\tau i}) K_{i}^{-1}, \qquad (i \in I_{\circ}),$$

$$E_{j}, \quad F_{j}, \quad (j \in I_{\bullet}),$$

$$K_{\mu}, \quad (\mu \in P^{\theta})$$

- lacksquare coideal subalgebra: $\Delta: U^{\imath} o U^{\imath} \otimes U$
- For the pair $(\mathfrak{g} \oplus \mathfrak{g}, \mathfrak{g}_{\Delta})$, one has $U^{\imath} \cong U$.

Quantum symmetric pairs

 $lackbox{ } (U(\mathfrak{g}),U(\mathfrak{k}))$: symmetric pair \leadsto $(\mathrm{U},\mathrm{U}^{\imath})$: quantum symmetric pairs

Definition (Letzter, Kolb)

The \imath quantum group U^\imath associated with $(\mathfrak{g},\mathfrak{k})$ is the $\mathbb{C}(q)$ -subalgebra of U generated by

$$B_{i} = F_{i} + \varsigma_{i} T_{w_{\bullet}}(E_{\tau i}) K_{i}^{-1}, \qquad (i \in I_{\circ}),$$

$$E_{j}, \quad F_{j}, \quad (j \in I_{\bullet}),$$

$$K_{\mu}, \quad (\mu \in P^{\theta})$$

- lacksquare coideal subalgebra: $\Delta: U^{\imath} \to U^{\imath} \otimes U$
- For the pair $(\mathfrak{g} \oplus \mathfrak{g}, \mathfrak{g}_{\Delta})$, one has $U^{\imath} \cong U$.

Goal: Study representation of U^i when $q=\sqrt[\ell]{1}$.

Quantum symmetric pairs

 $lackbox{ } (U(\mathfrak{g}),U(\mathfrak{k}))$: symmetric pair \leadsto $(\mathrm{U},\mathrm{U}^{\imath})$: quantum symmetric pairs

Definition (Letzter, Kolb)

The \imath quantum group U^\imath associated with $(\mathfrak{g},\mathfrak{k})$ is the $\mathbb{C}(q)$ -subalgebra of U generated by

$$B_{i} = F_{i} + \varsigma_{i} T_{w_{\bullet}}(E_{\tau i}) K_{i}^{-1}, \qquad (i \in I_{\circ}),$$

$$E_{j}, \quad F_{j}, \quad (j \in I_{\bullet}),$$

$$K_{\mu}, \quad (\mu \in P^{\theta})$$

- lacksquare coideal subalgebra: $\Delta: U^i o U^i \otimes U$
- For the pair $(\mathfrak{g} \oplus \mathfrak{g}, \mathfrak{g}_{\Delta})$, one has $U^{\imath} \cong U$.

Goal: Study representation of U^\imath when $q=\sqrt[\ell]{1}$.

Answer: Poisson geometry of U¹!

Integral forms

Let $\mathcal{A}=\mathbb{C}[q,q^{-1}].$ There are three distinguished integral forms:

$$\begin{split} \mathrm{U}_{\mathcal{A}}^{Lu} &= \mathcal{A}\langle E_i^{(n)} = E_i^n/[n]_i!, F_i^{(n)}, \mathcal{K}_{\mu}\rangle : \mathsf{Lusztig} \ \mathsf{form} \\ \mathrm{U}_{\mathcal{A}}^{DK} &= \mathcal{A}\langle E_i, F_i, \mathcal{K}_{\mu}\rangle : \mathsf{De} \ \mathsf{Concini\text{-}Kac} \ \mathsf{form} \\ \mathrm{U}_{\mathcal{A}} &= \mathcal{A}[\mathsf{Br}(W)]\langle \mathbf{E}_i = E_i/(q_i - q_i^{-1}), \mathbf{F}_i, \mathcal{K}_{\mu}\rangle : \mathsf{dual} \ \mathsf{Lusztig} \ \mathsf{form} \end{split}$$
 We focus on $\mathbf{U}_{\mathcal{A}}$. Set $\mathbf{U}_{\mathcal{A}}^i = \mathbf{U}^i \cap \mathbf{U}_{\mathcal{A}}$.

- U_A is a quantum deformation of the Poisson algebra $\mathbb{C}[G^*]$.
- $\mathbb{C} \otimes_{q \mapsto \varepsilon} U_{\mathcal{A}} \cong \mathbb{C} \otimes_{q \mapsto \varepsilon} U_{\mathcal{A}}^{DK}$, where ϵ is the primitive ℓ -th root of unity, for $\ell > 3$ odd.

Semi-classical limits

In general, suppose R_q is an $\mathbb{C}[q,q^{-1}]$ -algebra. Suppose R_q satisfies the condition

$$[f,g] = fg - gf \in (q-1)R_q, \qquad \forall f,g \in R_q. \tag{1}$$

Then $R=\mathbb{C}\otimes_{q\mapsto 1}R_q$ is a commutative Poisson algebra over \mathbb{C} , where

$$\{\overline{f},\overline{g}\}=rac{[f,g]}{q-1}.$$

R is called the semi-classical limit of R_q .

Semi-classical limits of U_A

Let G be the simply connected semisimple group with Lie algebra \mathfrak{g} . Let (B^+,B^-) be a pair of Borel groups, such that $H=B^+\cap B^-$ is the maximal torus. The dual Poisson-Lie group is

$$G^* = \{(b_1, b_2) \in B^+ \times B^- \mid \pi_H^+(b_1)\pi_H^-(b_2) = id\}.$$

It carries a canonical Poisson structure.

Theorem (De Concini-Procesi)

The algebra U_A satisfies the condition (1). Moreover one has the canonical isomorphism

$$\mathbb{C} \otimes_{q \mapsto 1} \mathrm{U}_{\mathcal{A}} \stackrel{\sim}{\longrightarrow} \mathbb{C}[G^*]$$

as Poisson algebras.

Semi-classical limit of $\mathrm{U}^\imath_\mathcal{A}$

Hint: $\Delta: \mathrm{U}^{\imath}_{\mathcal{A}} \to \mathrm{U}^{\imath}_{\mathcal{A}} \otimes \mathrm{U}_{\mathcal{A}} \quad \leadsto \quad \text{Poisson homogeneous space of } G^*$ Involution $\theta: \mathfrak{g} \to \mathfrak{g}$ integrates to $\theta: G \to G$. Recall $G^* \subset B^+ \times B^- \subset G \times G$. Set

$$G_{\theta} = \{(g, \theta(g)) \mid g \in G\} \subset G \times G,$$

and $K^{\perp} \subset G^*$ to be the identity component of $G_{\theta} \cap G^*$.

Theorem (S., 2024)

The quotient $K^{\perp} \setminus G^*$ is an affine G^* -Poisson homogeneous space. Hence $\mathbb{C}[K^{\perp} \setminus G^*] \subset \mathbb{C}[G^*]$ is a Poisson subalgebra.

There is a canonical isomorphism

$$\mathbb{C} \otimes_{q' \to 1} \mathrm{U}^{\imath}_{\mathcal{A}} \cong \mathbb{C}[K^{\perp} \backslash G^*]$$

as Poisson algebras.

Representation of U_A at root of 1

Let $\ell > 3$ be an odd integer, and ε be a primitive ℓ -th root of 1. Let

$$\mathrm{U}_1 = \mathbb{C} \otimes_{q \mapsto 1} \mathrm{U}_{\mathcal{A}} \cong \mathbb{C}[G^*], \quad \mathrm{U}_{\varepsilon} = \mathbb{C} \otimes_{q \mapsto \varepsilon} \mathrm{U}_{\mathcal{A}}.$$

[De Concini-Kac-Procesi] constructed a Poisson algebra embedding

$$\operatorname{Fr}: \operatorname{U}_1 \to Z(\operatorname{U}_{\varepsilon}); \qquad \mathbf{E}_i \mapsto \mathbf{E}_i^{\ell}, \mathbf{F}_i \mapsto \mathbf{F}_i^{\ell}, \mathbf{K}_{\mu} \mapsto \mathbf{K}_{\ell\mu}.$$

 $Z_0 = Fr(U_1)$ is called the Frobenius center. Moreover,

- U_e is a free Z_0 -module of rank $\ell^{\dim \mathfrak{g}}$.
- For $\chi \in G^*$, let $U_{\varepsilon,\chi} = U_{\varepsilon}/\mathfrak{m}_{\chi}U_{\varepsilon}$. Then Irr $U_{\varepsilon} = \sqcup_{\chi \in G^*}$ Irr $U_{\varepsilon,\chi}$.
- Let $\varphi: G^* \to G$ be $(b_1, b_2) \mapsto b_1^{-1}b_2$. Then $U_{\varepsilon,\chi} \cong U_{\varepsilon,\chi'}$, if $\varphi(\chi)$, $\varphi(\chi')$ are in the same conjugacy class of G ($\approx \chi$, χ' are in the same symplectic leaf).

 (U_{ε}, Z_0) is a Poisson order in the sense of [Brown–Gordon].

Representation of $\mathrm{U}^\imath_{\ A}$ at root of 1

Let

$$\mathrm{U}_1^{\imath} = \mathbb{C} \otimes_{q \mapsto 1} \mathrm{U}_{\mathcal{A}} \cong \mathbb{C}[\mathsf{K}^{\perp} \backslash \mathsf{G}^*], \quad \mathrm{U}_{\varepsilon}^{\imath} = \mathbb{C} \otimes_{q \mapsto \varepsilon} \mathrm{U}_{\mathcal{A}}$$

Theorem (S.-Zhang, 2025+)

There is a Poisson algebra embedding

$$Fr^i: \mathrm{U}_1^i \to Z(\mathrm{U}_{\varepsilon}^i).$$

We call $Z_0^i = Fr^i(\mathrm{U}_1^i)$ the Frobenius center of U_ε^i . Then U_ε^i is free over Z_0^i of rank $\ell^{\dim \mathfrak{k}}$.

In split rank one, we have

$$\operatorname{\mathsf{Fr}}^{\imath}(\mathbf{B}_{i}) = \mathbf{B}_{i} \prod_{r=1}^{(\ell-1)/2} (\mathbf{B}_{i}^{2} + (q_{i} - q_{i}^{-1})^{2} [2r - 1]_{i}^{2}).$$

Representation of $U^{\imath}_{\mathcal{A}}$ at root of 1, continued

We have central subalgebra $Z_0^i\subset \mathrm{U}_\varepsilon^i$, where Spec $Z_0^i\cong K^\perp\backslash G^*$. For $\chi\in K^\perp\backslash G^*$, set $\mathrm{U}_{\varepsilon,\chi}^i=\mathrm{U}_\varepsilon^i/\mathfrak{m}_\chi\mathrm{U}_\varepsilon^i$. Then

$$\operatorname{Irr}\, {\rm U}^{\imath}_{\varepsilon} = \sqcup_{\chi \in \mathsf{K}^{\perp} \backslash \mathsf{G}^{\ast}} \operatorname{Irr}\, {\rm U}^{\imath}_{\varepsilon,\chi}.$$

Let

$$\varphi^{\imath}: \mathsf{K}^{\perp} \backslash \mathsf{G}^{\ast} \to \mathsf{G}, \quad \mathsf{K}^{\perp}(b_1,b_2) \mapsto \theta(b_1)^{-1}b_2.$$

Theorem (S.-Zhang, 2025+)

For χ , χ' in $K^{\perp} \backslash G^*$, suppose $\varphi^i(\chi)$, $\varphi^i(\chi')$ are in the same θ -twisted conjugacy class, that is, $\varphi^i(\chi) = g \varphi^i(\chi') \theta(g)^{-1}$. Then $U^i_{\varepsilon,\chi} \cong U^i_{\varepsilon,\chi'}$ as \mathbb{C} -algebras.

In other words, we have a finite map

$$\psi: \operatorname{Irr} \operatorname{U}^{\imath}_{\varepsilon} \longrightarrow G$$

with isomorphic fibres along θ -twisted conjugacy classes, θ

More theorems

Theorem (S.-Zhang, 2025+)

- The inclusion $Z_0^i \hookrightarrow Z(U_{\varepsilon}^i)$ induces a finite map $Spec\ Z(U_{\varepsilon}^i) \to K^{\perp} \backslash G^*$ of degree $\ell^{rank\ \mathfrak{k}}$.
- For $V \in Irr U_{\varepsilon}^{\iota}$, we have dim $V \leq \ell^{|\Phi_{\mathfrak{k}}^+|}$.
- Any generic irreducible representation of U_{ε}^{\imath} is a direct summand of an irreducible representation of U_{ε} .

Conjecture

For any $\chi \in \mathcal{K}^{\perp} \backslash \mathcal{G}^*$ and $V \in \operatorname{Irr} \, \mathrm{U}^{\imath}_{\varepsilon,\chi}.$ One has

$$\ell^{(\dim \mathcal{C}_{\theta}(\varphi^{\imath}(\chi))-\dim \mathfrak{g}+\dim \mathfrak{k})/2} \mid \dim V.$$

More theorems

Theorem (S.-Zhang, 2025+)

- The inclusion $Z_0^i \hookrightarrow Z(U_{\varepsilon}^i)$ induces a finite map $Spec\ Z(U_{\varepsilon}^i) \to K^{\perp} \backslash G^*$ of degree $\ell^{rank\ \mathfrak{k}}$.
- For $V \in Irr U_{\varepsilon}^{\iota}$, we have dim $V \leq \ell^{|\Phi_{\mathfrak{k}}^+|}$.
- Any generic irreducible representation of U_{ε}^{i} is a direct summand of an irreducible representation of U_{ε} .

Conjecture

For any $\chi \in K^{\perp} \backslash G^*$ and $V \in \operatorname{Irr} U^{\imath}_{\varepsilon,\chi}$. One has

$$\ell^{(\dim \mathcal{C}_{\theta}(\varphi^{\imath}(\chi))-\dim \mathfrak{g}+\dim \mathfrak{k})/2} \mid \dim V.$$

Thank you!

